python - groupby selecting from multi-index pandas


1 Answers

You can use DataFrame.xs():

In [36]: df = DataFrame(np.random.randn(10, 4))

In [37]: df.columns = [np.random.choice(['a', 'b'], size=4).tolist(), np.random.choice(['c', 'd'], size=4)]

In [38]: df.columns.names = ['A', 'B']

In [39]: df
Out[39]:
A      b             a
B      d      d      d      d
0 -1.406  0.548 -0.635  0.576
1 -0.212 -0.583  1.012 -1.377
2  0.951 -0.349 -0.477 -1.230
3  0.451 -0.168  0.949  0.545
4 -0.362 -0.855  1.676 -2.881
5  1.283  1.027  0.085 -1.282
6  0.583 -1.406  0.327 -0.146
7 -0.518 -0.480  0.139  0.851
8 -0.030 -0.630 -1.534  0.534
9  0.246 -1.558 -1.885 -1.543

In [40]: df.xs('a', level='A', axis=1)
Out[40]:
B      d      d
0 -0.635  0.576
1  1.012 -1.377
2 -0.477 -1.230
3  0.949  0.545
4  1.676 -2.881
5  0.085 -1.282
6  0.327 -0.146
7  0.139  0.851
8 -1.534  0.534
9 -1.885 -1.543

If you want to keep the A level (the drop_level keyword argument is only available starting from v0.13.0):

In [42]: df.xs('a', level='A', axis=1, drop_level=False)
Out[42]:
A      a
B      d      d
0 -0.635  0.576
1  1.012 -1.377
2 -0.477 -1.230
3  0.949  0.545
4  1.676 -2.881
5  0.085 -1.282
6  0.327 -0.146
7  0.139  0.851
8 -1.534  0.534
9 -1.885 -1.543
pandas dataframe

I have a multi-index data frame with columns 'A' and 'B'.

Is there is a way to select rows by filtering on one column of the multi-index without reseting the index to single column index.

For Example.

# has multi-index (A,B)
df
#can i do this? I know this doesnt work because index is multi-index so I need to     specify a tuple

df.ix[df.A ==1]


Related