python - pandas groupby first - Pandas dataframe get first row of each group




2 Answers

This will give you the second row of each group (zero indexed, nth(0) is the same as first()):

df.groupby('id').nth(1) 

Documentation: http://pandas.pydata.org/pandas-docs/stable/groupby.html#taking-the-nth-row-of-each-group

pandas groupby first()

I have a pandas DataFrame like following.

df = pd.DataFrame({'id' : [1,1,1,2,2,3,3,3,3,4,4,5,6,6,6,7,7],
                'value'  : ["first","second","second","first",
                            "second","first","third","fourth",
                            "fifth","second","fifth","first",
                            "first","second","third","fourth","fifth"]})

I want to group this by ["id","value"] and get the first row of each group.

        id   value
0        1   first
1        1  second
2        1  second
3        2   first
4        2  second
5        3   first
6        3   third
7        3  fourth
8        3   fifth
9        4  second
10       4   fifth
11       5   first
12       6   first
13       6  second
14       6   third
15       7  fourth
16       7   fifth

Expected outcome

    id   value
     1   first
     2   first
     3   first
     4  second
     5  first
     6  first
     7  fourth

I tried following which only gives the first row of the DataFrame. Any help regarding this is appreciated.

In [25]: for index, row in df.iterrows():
   ....:     df2 = pd.DataFrame(df.groupby(['id','value']).reset_index().ix[0])



maybe this is what you want

import pandas as pd
idx = pd.MultiIndex.from_product([['state1','state2'],   ['county1','county2','county3','county4']])
df = pd.DataFrame({'pop': [12,15,65,42,78,67,55,31]}, index=idx)
                pop
state1 county1   12
       county2   15
       county3   65
       county4   42
state2 county1   78
       county2   67
       county3   55
       county4   31
df.groupby(level=0, group_keys=False).apply(lambda x: x.sort_values('pop', ascending=False)).groupby(level=0).head(3)

> Out[29]: 
                pop
state1 county3   65
       county4   42
       county2   15
state2 county1   78
       county2   67
       county3   55



Related