How do I convert between big-endian and little-endian values in C++?


Answers

Simply put:

#include <climits>

template <typename T>
T swap_endian(T u)
{
    static_assert (CHAR_BIT == 8, "CHAR_BIT != 8");

    union
    {
        T u;
        unsigned char u8[sizeof(T)];
    } source, dest;

    source.u = u;

    for (size_t k = 0; k < sizeof(T); k++)
        dest.u8[k] = source.u8[sizeof(T) - k - 1];

    return dest.u;
}

usage: swap_endian<uint32_t>(42).

Question

How do I convert between big-endian and little-endian values in C++?

EDIT: For clarity, I have to translate binary data (double-precision floating point values and 32-bit and 64-bit integers) from one CPU architecture to another. This doesn't involve networking, so ntoh() and similar functions won't work here.

EDIT #2: The answer I accepted applies directly to compilers I'm targetting (which is why I chose it). However, there are other very good, more portable answers here.




Here's how to read a double stored in IEEE 754 64 bit format, even if your host computer uses a different system.

/*
* read a double from a stream in ieee754 format regardless of host
*  encoding.
*  fp - the stream
*  bigendian - set to if big bytes first, clear for little bytes
*              first
*
*/
double freadieee754(FILE *fp, int bigendian)
{
    unsigned char buff[8];
    int i;
    double fnorm = 0.0;
    unsigned char temp;
    int sign;
    int exponent;
    double bitval;
    int maski, mask;
    int expbits = 11;
    int significandbits = 52;
    int shift;
    double answer;

    /* read the data */
    for (i = 0; i < 8; i++)
        buff[i] = fgetc(fp);
    /* just reverse if not big-endian*/
    if (!bigendian)
    {
        for (i = 0; i < 4; i++)
        {
            temp = buff[i];
            buff[i] = buff[8 - i - 1];
            buff[8 - i - 1] = temp;
        }
    }
    sign = buff[0] & 0x80 ? -1 : 1;
    /* exponet in raw format*/
    exponent = ((buff[0] & 0x7F) << 4) | ((buff[1] & 0xF0) >> 4);

    /* read inthe mantissa. Top bit is 0.5, the successive bits half*/
    bitval = 0.5;
    maski = 1;
    mask = 0x08;
    for (i = 0; i < significandbits; i++)
    {
        if (buff[maski] & mask)
            fnorm += bitval;

        bitval /= 2.0;
        mask >>= 1;
        if (mask == 0)
        {
            mask = 0x80;
            maski++;
        }
    }
    /* handle zero specially */
    if (exponent == 0 && fnorm == 0)
        return 0.0;

    shift = exponent - ((1 << (expbits - 1)) - 1); /* exponent = shift + bias */
    /* nans have exp 1024 and non-zero mantissa */
    if (shift == 1024 && fnorm != 0)
        return sqrt(-1.0);
    /*infinity*/
    if (shift == 1024 && fnorm == 0)
    {

#ifdef INFINITY
        return sign == 1 ? INFINITY : -INFINITY;
#endif
        return  (sign * 1.0) / 0.0;
    }
    if (shift > -1023)
    {
        answer = ldexp(fnorm + 1.0, shift);
        return answer * sign;
    }
    else
    {
        /* denormalised numbers */
        if (fnorm == 0.0)
            return 0.0;
        shift = -1022;
        while (fnorm < 1.0)
        {
            fnorm *= 2;
            shift--;
        }
        answer = ldexp(fnorm, shift);
        return answer * sign;
    }
}

For the rest of the suite of functions, including the write and the integer routines see my github project

https://github.com/MalcolmMcLean/ieee754




I am really surprised no one mentioned htobeXX and betohXX functions. They are defined in endian.h and are very similar to network functions htonXX.




Look up bit shifting, as this is basically all you need to do to swap from little -> big endian. Then depending on the bit size, you change how you do the bit shifting.




I have this code that allow me to convert from HOST_ENDIAN_ORDER (whatever it is) to LITTLE_ENDIAN_ORDER or BIG_ENDIAN_ORDER. I use a template, so if I try to convert from HOST_ENDIAN_ORDER to LITTLE_ENDIAN_ORDER and they happen to be the same for the machine for wich I compile, no code will be generated.

Here is the code with some comments:

// We define some constant for little, big and host endianess. Here I use 
// BOOST_LITTLE_ENDIAN/BOOST_BIG_ENDIAN to check the host indianess. If you
// don't want to use boost you will have to modify this part a bit.
enum EEndian
{
  LITTLE_ENDIAN_ORDER,
  BIG_ENDIAN_ORDER,
#if defined(BOOST_LITTLE_ENDIAN)
  HOST_ENDIAN_ORDER = LITTLE_ENDIAN_ORDER
#elif defined(BOOST_BIG_ENDIAN)
  HOST_ENDIAN_ORDER = BIG_ENDIAN_ORDER
#else
#error "Impossible de determiner l'indianness du systeme cible."
#endif
};

// this function swap the bytes of values given it's size as a template
// parameter (could sizeof be used?).
template <class T, unsigned int size>
inline T SwapBytes(T value)
{
  union
  {
     T value;
     char bytes[size];
  } in, out;

  in.value = value;

  for (unsigned int i = 0; i < size / 2; ++i)
  {
     out.bytes[i] = in.bytes[size - 1 - i];
     out.bytes[size - 1 - i] = in.bytes[i];
  }

  return out.value;
}

// Here is the function you will use. Again there is two compile-time assertion
// that use the boost librarie. You could probably comment them out, but if you
// do be cautious not to use this function for anything else than integers
// types. This function need to be calles like this :
//
//     int x = someValue;
//     int i = EndianSwapBytes<HOST_ENDIAN_ORDER, BIG_ENDIAN_ORDER>(x);
//
template<EEndian from, EEndian to, class T>
inline T EndianSwapBytes(T value)
{
  // A : La donnée à swapper à une taille de 2, 4 ou 8 octets
  BOOST_STATIC_ASSERT(sizeof(T) == 2 || sizeof(T) == 4 || sizeof(T) == 8);

  // A : La donnée à swapper est d'un type arithmetic
  BOOST_STATIC_ASSERT(boost::is_arithmetic<T>::value);

  // Si from et to sont du même type on ne swap pas.
  if (from == to)
     return value;

  return SwapBytes<T, sizeof(T)>(value);
}



The same way you do in C:

short big = 0xdead;
short little = (((big & 0xff)<<8) | ((big & 0xff00)>>8));

You could also declare a vector of unsigned chars, memcpy the input value into it, reverse the bytes into another vector and memcpy the bytes out, but that'll take orders of magnitude longer than bit-twiddling, especially with 64-bit values.




Portable technique for implementing optimizer-friendly unaligned non-inplace endian accessors. They work on every compiler, every boundary alignment and every byte ordering. These unaligned routines are supplemented, or mooted, depending on native endian and alignment. Partial listing but you get the idea. BO* are constant values based on native byte ordering.

uint32_t sw_get_uint32_1234(pu32)
uint32_1234 *pu32;
{
  union {
    uint32_1234 u32_1234;
    uint32_t u32;
  } bou32;
  bou32.u32_1234[0] = (*pu32)[BO32_0];
  bou32.u32_1234[1] = (*pu32)[BO32_1];
  bou32.u32_1234[2] = (*pu32)[BO32_2];
  bou32.u32_1234[3] = (*pu32)[BO32_3];
  return(bou32.u32);
}

void sw_set_uint32_1234(pu32, u32)
uint32_1234 *pu32;
uint32_t u32;
{
  union {
    uint32_1234 u32_1234;
    uint32_t u32;
  } bou32;
  bou32.u32 = u32;
  (*pu32)[BO32_0] = bou32.u32_1234[0];
  (*pu32)[BO32_1] = bou32.u32_1234[1];
  (*pu32)[BO32_2] = bou32.u32_1234[2];
  (*pu32)[BO32_3] = bou32.u32_1234[3];
}

#if HAS_SW_INT64
int64 sw_get_int64_12345678(pi64)
int64_12345678 *pi64;
{
  union {
    int64_12345678 i64_12345678;
    int64 i64;
  } boi64;
  boi64.i64_12345678[0] = (*pi64)[BO64_0];
  boi64.i64_12345678[1] = (*pi64)[BO64_1];
  boi64.i64_12345678[2] = (*pi64)[BO64_2];
  boi64.i64_12345678[3] = (*pi64)[BO64_3];
  boi64.i64_12345678[4] = (*pi64)[BO64_4];
  boi64.i64_12345678[5] = (*pi64)[BO64_5];
  boi64.i64_12345678[6] = (*pi64)[BO64_6];
  boi64.i64_12345678[7] = (*pi64)[BO64_7];
  return(boi64.i64);
}
#endif

int32_t sw_get_int32_3412(pi32)
int32_3412 *pi32;
{
  union {
    int32_3412 i32_3412;
    int32_t i32;
  } boi32;
  boi32.i32_3412[2] = (*pi32)[BO32_0];
  boi32.i32_3412[3] = (*pi32)[BO32_1];
  boi32.i32_3412[0] = (*pi32)[BO32_2];
  boi32.i32_3412[1] = (*pi32)[BO32_3];
  return(boi32.i32);
}

void sw_set_int32_3412(pi32, i32)
int32_3412 *pi32;
int32_t i32;
{
  union {
    int32_3412 i32_3412;
    int32_t i32;
  } boi32;
  boi32.i32 = i32;
  (*pi32)[BO32_0] = boi32.i32_3412[2];
  (*pi32)[BO32_1] = boi32.i32_3412[3];
  (*pi32)[BO32_2] = boi32.i32_3412[0];
  (*pi32)[BO32_3] = boi32.i32_3412[1];
}

uint32_t sw_get_uint32_3412(pu32)
uint32_3412 *pu32;
{
  union {
    uint32_3412 u32_3412;
    uint32_t u32;
  } bou32;
  bou32.u32_3412[2] = (*pu32)[BO32_0];
  bou32.u32_3412[3] = (*pu32)[BO32_1];
  bou32.u32_3412[0] = (*pu32)[BO32_2];
  bou32.u32_3412[1] = (*pu32)[BO32_3];
  return(bou32.u32);
}

void sw_set_uint32_3412(pu32, u32)
uint32_3412 *pu32;
uint32_t u32;
{
  union {
    uint32_3412 u32_3412;
    uint32_t u32;
  } bou32;
  bou32.u32 = u32;
  (*pu32)[BO32_0] = bou32.u32_3412[2];
  (*pu32)[BO32_1] = bou32.u32_3412[3];
  (*pu32)[BO32_2] = bou32.u32_3412[0];
  (*pu32)[BO32_3] = bou32.u32_3412[1];
}

float sw_get_float_1234(pf)
float_1234 *pf;
{
  union {
    float_1234 f_1234;
    float f;
  } bof;
  bof.f_1234[0] = (*pf)[BO32_0];
  bof.f_1234[1] = (*pf)[BO32_1];
  bof.f_1234[2] = (*pf)[BO32_2];
  bof.f_1234[3] = (*pf)[BO32_3];
  return(bof.f);
}

void sw_set_float_1234(pf, f)
float_1234 *pf;
float f;
{
  union {
    float_1234 f_1234;
    float f;
  } bof;
  bof.f = (float)f;
  (*pf)[BO32_0] = bof.f_1234[0];
  (*pf)[BO32_1] = bof.f_1234[1];
  (*pf)[BO32_2] = bof.f_1234[2];
  (*pf)[BO32_3] = bof.f_1234[3];
}

double sw_get_double_12345678(pd)
double_12345678 *pd;
{
  union {
    double_12345678 d_12345678;
    double d;
  } bod;
  bod.d_12345678[0] = (*pd)[BO64_0];
  bod.d_12345678[1] = (*pd)[BO64_1];
  bod.d_12345678[2] = (*pd)[BO64_2];
  bod.d_12345678[3] = (*pd)[BO64_3];
  bod.d_12345678[4] = (*pd)[BO64_4];
  bod.d_12345678[5] = (*pd)[BO64_5];
  bod.d_12345678[6] = (*pd)[BO64_6];
  bod.d_12345678[7] = (*pd)[BO64_7];
  return(bod.d);
}

void sw_set_double_12345678(pd, d)
double_12345678 *pd;
double d;
{
  union {
    double_12345678 d_12345678;
    double d;
  } bod;
  bod.d = d;
  (*pd)[BO64_0] = bod.d_12345678[0];
  (*pd)[BO64_1] = bod.d_12345678[1];
  (*pd)[BO64_2] = bod.d_12345678[2];
  (*pd)[BO64_3] = bod.d_12345678[3];
  (*pd)[BO64_4] = bod.d_12345678[4];
  (*pd)[BO64_5] = bod.d_12345678[5];
  (*pd)[BO64_6] = bod.d_12345678[6];
  (*pd)[BO64_7] = bod.d_12345678[7];
}

These typedefs have the benefit of raising compiler errors if not used with accessors, thus mitigating forgotten accessor bugs.

typedef char int8_1[1], uint8_1[1];

typedef char int16_12[2], uint16_12[2]; /* little endian */
typedef char int16_21[2], uint16_21[2]; /* big endian */

typedef char int24_321[3], uint24_321[3]; /* Alpha Micro, PDP-11 */

typedef char int32_1234[4], uint32_1234[4]; /* little endian */
typedef char int32_3412[4], uint32_3412[4]; /* Alpha Micro, PDP-11 */
typedef char int32_4321[4], uint32_4321[4]; /* big endian */

typedef char int64_12345678[8], uint64_12345678[8]; /* little endian */
typedef char int64_34128756[8], uint64_34128756[8]; /* Alpha Micro, PDP-11 */
typedef char int64_87654321[8], uint64_87654321[8]; /* big endian */

typedef char float_1234[4]; /* little endian */
typedef char float_3412[4]; /* Alpha Micro, PDP-11 */
typedef char float_4321[4]; /* big endian */

typedef char double_12345678[8]; /* little endian */
typedef char double_78563412[8]; /* Alpha Micro? */
typedef char double_87654321[8]; /* big endian */



If you are doing this for purposes of network/host compatability you should use:

ntohl() //Network to Host byte order (Long)
htonl() //Host to Network byte order (Long)

ntohs() //Network to Host byte order (Short)
htons() //Host to Network byte order (Short)

If you are doing this for some other reason one of the byte_swap solutions presented here would work just fine.




There is an assembly instruction called BSWAP that will do the swap for you, extremely fast. You can read about it here.

Visual Studio, or more precisely the Visual C++ runtime library, has platform intrinsics for this, called _byteswap_ushort(), _byteswap_ulong(), and _byteswap_int64(). Similar should exist for other platforms, but I'm not aware of what they would be called.




i like this one, just for style :-)

long swap(long i) {
    char *c = (char *) &i;
    return * (long *) (char[]) {c[3], c[2], c[1], c[0] };
}



Just thought I added my own solution here since I haven't seen it anywhere. It's a small and portable C++ templated function and portable that only uses bit operations.

template<typename T> inline static T swapByteOrder(const T& val) {
    int totalBytes = sizeof(val);
    T swapped = (T) 0;
    for (int i = 0; i < totalBytes; ++i) {
        swapped |= (val >> (8*(totalBytes-i-1)) & 0xFF) << (8*i);
    }
    return swapped;
}



Note that, at least for Windows, htonl() is much slower than their intrinsic counterpart _byteswap_ulong(). The former is a DLL library call into ws2_32.dll, the latter is one BSWAP assembly instruction. Therefore, if you are writing some platform-dependent code, prefer using the intrinsics for speed:

#define htonl(x) _byteswap_ulong(x)

This may be especially important for .PNG image processing where all integers are saved in Big Endian with explanation "One can use htonl()..." {to slow down typical Windows programs, if you are not prepared}.




We've done this with templates. You could so something like this:

// Specialization for 2-byte types.
template<>
inline void endian_byte_swapper< 2 >(char* dest, char const* src)
{
    // Use bit manipulations instead of accessing individual bytes from memory, much faster.
    ushort* p_dest = reinterpret_cast< ushort* >(dest);
    ushort const* const p_src = reinterpret_cast< ushort const* >(src);
    *p_dest = (*p_src >> 8) | (*p_src << 8);
}

// Specialization for 4-byte types.
template<>
inline void endian_byte_swapper< 4 >(char* dest, char const* src)
{
    // Use bit manipulations instead of accessing individual bytes from memory, much faster.
    uint* p_dest = reinterpret_cast< uint* >(dest);
    uint const* const p_src = reinterpret_cast< uint const* >(src);
    *p_dest = (*p_src >> 24) | ((*p_src & 0x00ff0000) >> 8) | ((*p_src & 0x0000ff00) << 8) | (*p_src << 24);
}



Here's a generalized version I came up with off the top of my head, for swapping a value in place. The other suggestions would be better if performance is a problem.

 template<typename T>
    void ByteSwap(T * p)
    {
        for (int i = 0;  i < sizeof(T)/2;  ++i)
            std::swap(((char *)p)[i], ((char *)p)[sizeof(T)-1-i]);
    }

Disclaimer: I haven't tried to compile this or test it yet.




Links