How would you implement an LRU cache in Java?


Question

Please don't say EHCache or OSCache, etc. Assume for purposes of this question that I want to implement my own using just the SDK (learning by doing). Given that the cache will be used in a multithreaded environment, which datastructures would you use? I've already implemented one using LinkedHashMap and Collections#synchronizedMap, but I'm curious if any of the new concurrent collections would be better candidates.

UPDATE: I was just reading through Yegge's latest when I found this nugget:

If you need constant-time access and want to maintain the insertion order, you can't do better than a LinkedHashMap, a truly wonderful data structure. The only way it could possibly be more wonderful is if there were a concurrent version. But alas.

I was thinking almost exactly the same thing before I went with the LinkedHashMap + Collections#synchronizedMap implementation I mentioned above. Nice to know I hadn't just overlooked something.

Based on the answers so far, it sounds like my best bet for a highly concurrent LRU would be to extend ConcurrentHashMap using some of the same logic that LinkedHashMap uses.




Here is my implementation for LRU. I have used PriorityQueue, which basically works as FIFO and not threadsafe. Used Comparator based on the page time creation and based on the performs the ordering of the pages for the least recently used time.

Pages for consideration : 2, 1, 0, 2, 8, 2, 4

Page added into cache is : 2
Page added into cache is : 1
Page added into cache is : 0
Page: 2 already exisit in cache. Last accessed time updated
Page Fault, PAGE: 1, Replaced with PAGE: 8
Page added into cache is : 8
Page: 2 already exisit in cache. Last accessed time updated
Page Fault, PAGE: 0, Replaced with PAGE: 4
Page added into cache is : 4

OUTPUT

LRUCache Pages
-------------
PageName: 8, PageCreationTime: 1365957019974
PageName: 2, PageCreationTime: 1365957020074
PageName: 4, PageCreationTime: 1365957020174

enter code here

import java.util.Comparator;
import java.util.Iterator;
import java.util.PriorityQueue;


public class LRUForCache {
    private PriorityQueue<LRUPage> priorityQueue = new PriorityQueue<LRUPage>(3, new LRUPageComparator());
    public static void main(String[] args) throws InterruptedException {

        System.out.println(" Pages for consideration : 2, 1, 0, 2, 8, 2, 4");
        System.out.println("----------------------------------------------\n");

        LRUForCache cache = new LRUForCache();
        cache.addPageToQueue(new LRUPage("2"));
        Thread.sleep(100);
        cache.addPageToQueue(new LRUPage("1"));
        Thread.sleep(100);
        cache.addPageToQueue(new LRUPage("0"));
        Thread.sleep(100);
        cache.addPageToQueue(new LRUPage("2"));
        Thread.sleep(100);
        cache.addPageToQueue(new LRUPage("8"));
        Thread.sleep(100);
        cache.addPageToQueue(new LRUPage("2"));
        Thread.sleep(100);
        cache.addPageToQueue(new LRUPage("4"));
        Thread.sleep(100);

        System.out.println("\nLRUCache Pages");
        System.out.println("-------------");
        cache.displayPriorityQueue();
    }


    public synchronized void  addPageToQueue(LRUPage page){
        boolean pageExists = false;
        if(priorityQueue.size() == 3){
            Iterator<LRUPage> iterator = priorityQueue.iterator();

            while(iterator.hasNext()){
                LRUPage next = iterator.next();
                if(next.getPageName().equals(page.getPageName())){
                    /* wanted to just change the time, so that no need to poll and add again.
                       but elements ordering does not happen, it happens only at the time of adding
                       to the queue

                       In case somebody finds it, plz let me know.
                     */
                    //next.setPageCreationTime(page.getPageCreationTime()); 

                    priorityQueue.remove(next);
                    System.out.println("Page: " + page.getPageName() + " already exisit in cache. Last accessed time updated");
                    pageExists = true;
                    break;
                }
            }
            if(!pageExists){
                // enable it for printing the queue elemnts
                //System.out.println(priorityQueue);
                LRUPage poll = priorityQueue.poll();
                System.out.println("Page Fault, PAGE: " + poll.getPageName()+", Replaced with PAGE: "+page.getPageName());

            }
        }
        if(!pageExists){
            System.out.println("Page added into cache is : " + page.getPageName());
        }
        priorityQueue.add(page);

    }

    public void displayPriorityQueue(){
        Iterator<LRUPage> iterator = priorityQueue.iterator();
        while(iterator.hasNext()){
            LRUPage next = iterator.next();
            System.out.println(next);
        }
    }
}

class LRUPage{
    private String pageName;
    private long pageCreationTime;
    public LRUPage(String pagename){
        this.pageName = pagename;
        this.pageCreationTime = System.currentTimeMillis();
    }

    public String getPageName() {
        return pageName;
    }

    public long getPageCreationTime() {
        return pageCreationTime;
    }

    public void setPageCreationTime(long pageCreationTime) {
        this.pageCreationTime = pageCreationTime;
    }

    @Override
    public boolean equals(Object obj) {
        LRUPage page = (LRUPage)obj; 
        if(pageCreationTime == page.pageCreationTime){
            return true;
        }
        return false;
    }

    @Override
    public int hashCode() {
        return (int) (31 * pageCreationTime);
    }

    @Override
    public String toString() {
        return "PageName: " + pageName +", PageCreationTime: "+pageCreationTime;
    }
}


class LRUPageComparator implements Comparator<LRUPage>{

    @Override
    public int compare(LRUPage o1, LRUPage o2) {
        if(o1.getPageCreationTime() > o2.getPageCreationTime()){
            return 1;
        }
        if(o1.getPageCreationTime() < o2.getPageCreationTime()){
            return -1;
        }
        return 0;
    }
}



This is the LRU cache I use, which encapsulates a LinkedHashMap and handles concurrency with a simple synchronize lock guarding the juicy spots. It "touches" elements as they are used so that they become the "freshest" element again, so that it is actually LRU. I also had the requirement of my elements having a minimum lifespan, which you can also think of as "maximum idle time" permitted, then you're up for eviction.

However, I agree with Hank's conclusion and accepted answer -- if I were starting this again today, I'd check out Guava's CacheBuilder.

import java.util.HashMap;
import java.util.LinkedHashMap;
import java.util.Map;


public class MaxIdleLRUCache<KK, VV> {

    final static private int IDEAL_MAX_CACHE_ENTRIES = 128;

    public interface DeadElementCallback<KK, VV> {
        public void notify(KK key, VV element);
    }

    private Object lock = new Object();
    private long minAge;
    private HashMap<KK, Item<VV>> cache;


    public MaxIdleLRUCache(long minAgeMilliseconds) {
        this(minAgeMilliseconds, IDEAL_MAX_CACHE_ENTRIES);
    }

    public MaxIdleLRUCache(long minAgeMilliseconds, int idealMaxCacheEntries) {
        this(minAgeMilliseconds, idealMaxCacheEntries, null);
    }

    public MaxIdleLRUCache(long minAgeMilliseconds, int idealMaxCacheEntries, final DeadElementCallback<KK, VV> callback) {
        this.minAge = minAgeMilliseconds;
        this.cache = new LinkedHashMap<KK, Item<VV>>(IDEAL_MAX_CACHE_ENTRIES + 1, .75F, true) {
            private static final long serialVersionUID = 1L;

            // This method is called just after a new entry has been added
            public boolean removeEldestEntry(Map.Entry<KK, Item<VV>> eldest) {
                // let's see if the oldest entry is old enough to be deleted. We don't actually care about the cache size.
                long age = System.currentTimeMillis() - eldest.getValue().birth;
                if (age > MaxIdleLRUCache.this.minAge) {
                    if ( callback != null ) {
                        callback.notify(eldest.getKey(), eldest.getValue().payload);
                    }
                    return true; // remove it
                }
                return false; // don't remove this element
            }
        };

    }

    public void put(KK key, VV value) {
        synchronized ( lock ) {
//          System.out.println("put->"+key+","+value);
            cache.put(key, new Item<VV>(value));
        }
    }

    public VV get(KK key) {
        synchronized ( lock ) {
//          System.out.println("get->"+key);
            Item<VV> item = getItem(key);
            return item == null ? null : item.payload;
        }
    }

    public VV remove(String key) {
        synchronized ( lock ) {
//          System.out.println("remove->"+key);
            Item<VV> item =  cache.remove(key);
            if ( item != null ) {
                return item.payload;
            } else {
                return null;
            }
        }
    }

    public int size() {
        synchronized ( lock ) {
            return cache.size();
        }
    }

    private Item<VV> getItem(KK key) {
        Item<VV> item = cache.get(key);
        if (item == null) {
            return null;
        }
        item.touch(); // idle the item to reset the timeout threshold
        return item;
    }

    private static class Item<T> {
        long birth;
        T payload;

        Item(T payload) {
            this.birth = System.currentTimeMillis();
            this.payload = payload;
        }

        public void touch() {
            this.birth = System.currentTimeMillis();
        }
    }

}



This is round two.

The first round was what I came up with then I reread the comments with the domain a bit more ingrained in my head.

So here is the simplest version with a unit test that shows it works based on some other versions.

First the non-concurrent version:

import java.util.LinkedHashMap;
import java.util.Map;

public class LruSimpleCache<K, V> implements LruCache <K, V>{

    Map<K, V> map = new LinkedHashMap (  );


    public LruSimpleCache (final int limit) {
           map = new LinkedHashMap <K, V> (16, 0.75f, true) {
               @Override
               protected boolean removeEldestEntry(final Map.Entry<K, V> eldest) {
                   return super.size() > limit;
               }
           };
    }
    @Override
    public void put ( K key, V value ) {
        map.put ( key, value );
    }

    @Override
    public V get ( K key ) {
        return map.get(key);
    }

    //For testing only
    @Override
    public V getSilent ( K key ) {
        V value =  map.get ( key );
        if (value!=null) {
            map.remove ( key );
            map.put(key, value);
        }
        return value;
    }

    @Override
    public void remove ( K key ) {
        map.remove ( key );
    }

    @Override
    public int size () {
        return map.size ();
    }

    public String toString() {
        return map.toString ();
    }


}

The true flag will track the access of gets and puts. See JavaDocs. The removeEdelstEntry without the true flag to the constructor would just implement a FIFO cache (see notes below on FIFO and removeEldestEntry).

Here is the test that proves it works as an LRU cache:

public class LruSimpleTest {

    @Test
    public void test () {
        LruCache <Integer, Integer> cache = new LruSimpleCache<> ( 4 );


        cache.put ( 0, 0 );
        cache.put ( 1, 1 );

        cache.put ( 2, 2 );
        cache.put ( 3, 3 );


        boolean ok = cache.size () == 4 || die ( "size" + cache.size () );


        cache.put ( 4, 4 );
        cache.put ( 5, 5 );
        ok |= cache.size () == 4 || die ( "size" + cache.size () );
        ok |= cache.getSilent ( 2 ) == 2 || die ();
        ok |= cache.getSilent ( 3 ) == 3 || die ();
        ok |= cache.getSilent ( 4 ) == 4 || die ();
        ok |= cache.getSilent ( 5 ) == 5 || die ();


        cache.get ( 2 );
        cache.get ( 3 );
        cache.put ( 6, 6 );
        cache.put ( 7, 7 );
        ok |= cache.size () == 4 || die ( "size" + cache.size () );
        ok |= cache.getSilent ( 2 ) == 2 || die ();
        ok |= cache.getSilent ( 3 ) == 3 || die ();
        ok |= cache.getSilent ( 4 ) == null || die ();
        ok |= cache.getSilent ( 5 ) == null || die ();


        if ( !ok ) die ();

    }

Now for the concurrent version...

package org.boon.cache;

import java.util.LinkedHashMap;
import java.util.Map;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;

public class LruSimpleConcurrentCache<K, V> implements LruCache<K, V> {

    final CacheMap<K, V>[] cacheRegions;


    private static class CacheMap<K, V> extends LinkedHashMap<K, V> {
        private final ReadWriteLock readWriteLock;
        private final int limit;

        CacheMap ( final int limit, boolean fair ) {
            super ( 16, 0.75f, true );
            this.limit = limit;
            readWriteLock = new ReentrantReadWriteLock ( fair );

        }

        protected boolean removeEldestEntry ( final Map.Entry<K, V> eldest ) {
            return super.size () > limit;
        }


        @Override
        public V put ( K key, V value ) {
            readWriteLock.writeLock ().lock ();

            V old;
            try {

                old = super.put ( key, value );
            } finally {
                readWriteLock.writeLock ().unlock ();
            }
            return old;

        }


        @Override
        public V get ( Object key ) {
            readWriteLock.writeLock ().lock ();
            V value;

            try {

                value = super.get ( key );
            } finally {
                readWriteLock.writeLock ().unlock ();
            }
            return value;
        }

        @Override
        public V remove ( Object key ) {

            readWriteLock.writeLock ().lock ();
            V value;

            try {

                value = super.remove ( key );
            } finally {
                readWriteLock.writeLock ().unlock ();
            }
            return value;

        }

        public V getSilent ( K key ) {
            readWriteLock.writeLock ().lock ();

            V value;

            try {

                value = this.get ( key );
                if ( value != null ) {
                    this.remove ( key );
                    this.put ( key, value );
                }
            } finally {
                readWriteLock.writeLock ().unlock ();
            }
            return value;

        }

        public int size () {
            readWriteLock.readLock ().lock ();
            int size = -1;
            try {
                size = super.size ();
            } finally {
                readWriteLock.readLock ().unlock ();
            }
            return size;
        }

        public String toString () {
            readWriteLock.readLock ().lock ();
            String str;
            try {
                str = super.toString ();
            } finally {
                readWriteLock.readLock ().unlock ();
            }
            return str;
        }


    }

    public LruSimpleConcurrentCache ( final int limit, boolean fair ) {
        int cores = Runtime.getRuntime ().availableProcessors ();
        int stripeSize = cores < 2 ? 4 : cores * 2;
        cacheRegions = new CacheMap[ stripeSize ];
        for ( int index = 0; index < cacheRegions.length; index++ ) {
            cacheRegions[ index ] = new CacheMap<> ( limit / cacheRegions.length, fair );
        }
    }

    public LruSimpleConcurrentCache ( final int concurrency, final int limit, boolean fair ) {

        cacheRegions = new CacheMap[ concurrency ];
        for ( int index = 0; index < cacheRegions.length; index++ ) {
            cacheRegions[ index ] = new CacheMap<> ( limit / cacheRegions.length, fair );
        }
    }

    private int stripeIndex ( K key ) {
        int hashCode = key.hashCode () * 31;
        return hashCode % ( cacheRegions.length );
    }

    private CacheMap<K, V> map ( K key ) {
        return cacheRegions[ stripeIndex ( key ) ];
    }

    @Override
    public void put ( K key, V value ) {

        map ( key ).put ( key, value );
    }

    @Override
    public V get ( K key ) {
        return map ( key ).get ( key );
    }

    //For testing only
    @Override
    public V getSilent ( K key ) {
        return map ( key ).getSilent ( key );

    }

    @Override
    public void remove ( K key ) {
        map ( key ).remove ( key );
    }

    @Override
    public int size () {
        int size = 0;
        for ( CacheMap<K, V> cache : cacheRegions ) {
            size += cache.size ();
        }
        return size;
    }

    public String toString () {

        StringBuilder builder = new StringBuilder ();
        for ( CacheMap<K, V> cache : cacheRegions ) {
            builder.append ( cache.toString () ).append ( '\n' );
        }

        return builder.toString ();
    }


}

You can see why I cover the non-concurrent version first. The above attempts to create some stripes to reduce lock contention. So we it hashes the key and then looks up that hash to find the actual cache. This makes the limit size more of a suggestion/rough guess within a fair amount of error depending on how well spread your keys hash algorithm is.

Here is the test to show that the concurrent version probably works. :) (Test under fire would be the real way).

public class SimpleConcurrentLRUCache {


    @Test
    public void test () {
        LruCache <Integer, Integer> cache = new LruSimpleConcurrentCache<> ( 1, 4, false );


        cache.put ( 0, 0 );
        cache.put ( 1, 1 );

        cache.put ( 2, 2 );
        cache.put ( 3, 3 );


        boolean ok = cache.size () == 4 || die ( "size" + cache.size () );


        cache.put ( 4, 4 );
        cache.put ( 5, 5 );

        puts (cache);
        ok |= cache.size () == 4 || die ( "size" + cache.size () );
        ok |= cache.getSilent ( 2 ) == 2 || die ();
        ok |= cache.getSilent ( 3 ) == 3 || die ();
        ok |= cache.getSilent ( 4 ) == 4 || die ();
        ok |= cache.getSilent ( 5 ) == 5 || die ();


        cache.get ( 2 );
        cache.get ( 3 );
        cache.put ( 6, 6 );
        cache.put ( 7, 7 );
        ok |= cache.size () == 4 || die ( "size" + cache.size () );
        ok |= cache.getSilent ( 2 ) == 2 || die ();
        ok |= cache.getSilent ( 3 ) == 3 || die ();

        cache.put ( 8, 8 );
        cache.put ( 9, 9 );

        ok |= cache.getSilent ( 4 ) == null || die ();
        ok |= cache.getSilent ( 5 ) == null || die ();


        puts (cache);


        if ( !ok ) die ();

    }


    @Test
    public void test2 () {
        LruCache <Integer, Integer> cache = new LruSimpleConcurrentCache<> ( 400, false );


        cache.put ( 0, 0 );
        cache.put ( 1, 1 );

        cache.put ( 2, 2 );
        cache.put ( 3, 3 );


        for (int index =0 ; index < 5_000; index++) {
            cache.get(0);
            cache.get ( 1 );
            cache.put ( 2, index  );
            cache.put ( 3, index );
            cache.put(index, index);
        }

        boolean ok = cache.getSilent ( 0 ) == 0 || die ();
        ok |= cache.getSilent ( 1 ) == 1 || die ();
        ok |= cache.getSilent ( 2 ) != null || die ();
        ok |= cache.getSilent ( 3 ) != null || die ();

        ok |= cache.size () < 600 || die();
        if ( !ok ) die ();



    }

}

This is the last post.. The first post I deleted as it was a LFU not an LRU cache.

I thought I would give this another go. I was trying trying to come up with the simplest version of an LRU cache using the standard JDK w/o too much implementation.

Here is what I came up with. My first attempt was a bit of a disaster as I implemented a LFU instead of and LRU, and then I added FIFO, and LRU support to it... and then I realized it was becoming a monster. Then I started talking to my buddy John who was barely interested, and then I described at deep length how I implemented an LFU, LRU and FIFO and how you could switch it with a simple ENUM arg, and then I realized that all I really wanted was a simple LRU. So ignore the earlier post from me, and let me know if you want to see an LRU/LFU/FIFO cache that is switchable via an enum... no? Ok.. here he go.

The simplest possible LRU using just the JDK. I implemented both a concurrent version and a non-concurrent version.

I created a common interface (it is minimalism so likely missing a few features that you would like but it works for my use cases, but let if you would like to see feature XYZ let me know... I live to write code.).

public interface LruCache<KEY, VALUE> {
    void put ( KEY key, VALUE value );

    VALUE get ( KEY key );

    VALUE getSilent ( KEY key );

    void remove ( KEY key );

    int size ();
}

You may wonder what getSilent is. I use this for testing. getSilent does not change LRU score of an item.

First the non-concurrent one....

import java.util.Deque;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.Map;

public class LruCacheNormal<KEY, VALUE> implements LruCache<KEY,VALUE> {

    Map<KEY, VALUE> map = new HashMap<> ();
    Deque<KEY> queue = new LinkedList<> ();
    final int limit;


    public LruCacheNormal ( int limit ) {
        this.limit = limit;
    }

    public void put ( KEY key, VALUE value ) {
        VALUE oldValue = map.put ( key, value );

        /*If there was already an object under this key,
         then remove it before adding to queue
         Frequently used keys will be at the top so the search could be fast.
         */
        if ( oldValue != null ) {
            queue.removeFirstOccurrence ( key );
        }
        queue.addFirst ( key );

        if ( map.size () > limit ) {
            final KEY removedKey = queue.removeLast ();
            map.remove ( removedKey );
        }

    }


    public VALUE get ( KEY key ) {

        /* Frequently used keys will be at the top so the search could be fast.*/
        queue.removeFirstOccurrence ( key );
        queue.addFirst ( key );
        return map.get ( key );
    }


    public VALUE getSilent ( KEY key ) {

        return map.get ( key );
    }

    public void remove ( KEY key ) {

        /* Frequently used keys will be at the top so the search could be fast.*/
        queue.removeFirstOccurrence ( key );
        map.remove ( key );
    }

    public int size () {
        return map.size ();
    }

    public String toString() {
        return map.toString ();
    }
}

The queue.removeFirstOccurrence is a potentially expensive operation if you have a large cache. One could take LinkedList as an example and add a reverse lookup hash map from element to node to make remove operations A LOT FASTER and more consistent. I started too, but then realized I don't need it. But... maybe...

When put is called, the key gets added to the queue. When get is called, the key gets removed and re-added to the top of the queue.

If your cache is small and the building an item is expensive then this should be a good cache. If your cache is really large, then the linear search could be a bottle neck especially if you don't have hot areas of cache. The more intense the hot spots, the faster the linear search as hot items are always at the top of the linear search. Anyway... what is needed for this to go faster is write another LinkedList that has a remove operation that has reverse element to node lookup for remove, then removing would be about as fast as removing a key from a hash map.

If you have a cache under 1,000 items, this should work out fine.

Here is a simple test to show its operations in action.

public class LruCacheTest {

    @Test
    public void test () {
        LruCache<Integer, Integer> cache = new LruCacheNormal<> ( 4 );


        cache.put ( 0, 0 );
        cache.put ( 1, 1 );

        cache.put ( 2, 2 );
        cache.put ( 3, 3 );


        boolean ok = cache.size () == 4 || die ( "size" + cache.size () );
        ok |= cache.getSilent ( 0 ) == 0 || die ();
        ok |= cache.getSilent ( 3 ) == 3 || die ();


        cache.put ( 4, 4 );
        cache.put ( 5, 5 );
        ok |= cache.size () == 4 || die ( "size" + cache.size () );
        ok |= cache.getSilent ( 0 ) == null || die ();
        ok |= cache.getSilent ( 1 ) == null || die ();
        ok |= cache.getSilent ( 2 ) == 2 || die ();
        ok |= cache.getSilent ( 3 ) == 3 || die ();
        ok |= cache.getSilent ( 4 ) == 4 || die ();
        ok |= cache.getSilent ( 5 ) == 5 || die ();

        if ( !ok ) die ();

    }
}

The last LRU cache was single threaded, and please don't wrap it in a synchronized anything....

Here is a stab at a concurrent version.

import java.util.Deque;
import java.util.LinkedList;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.locks.ReentrantLock;

public class ConcurrentLruCache<KEY, VALUE> implements LruCache<KEY,VALUE> {

    private final ReentrantLock lock = new ReentrantLock ();


    private final Map<KEY, VALUE> map = new ConcurrentHashMap<> ();
    private final Deque<KEY> queue = new LinkedList<> ();
    private final int limit;


    public ConcurrentLruCache ( int limit ) {
        this.limit = limit;
    }

    @Override
    public void put ( KEY key, VALUE value ) {
        VALUE oldValue = map.put ( key, value );
        if ( oldValue != null ) {
            removeThenAddKey ( key );
        } else {
            addKey ( key );
        }
        if (map.size () > limit) {
            map.remove ( removeLast() );
        }
    }


    @Override
    public VALUE get ( KEY key ) {
        removeThenAddKey ( key );
        return map.get ( key );
    }


    private void addKey(KEY key) {
        lock.lock ();
        try {
            queue.addFirst ( key );
        } finally {
            lock.unlock ();
        }


    }

    private KEY removeLast( ) {
        lock.lock ();
        try {
            final KEY removedKey = queue.removeLast ();
            return removedKey;
        } finally {
            lock.unlock ();
        }
    }

    private void removeThenAddKey(KEY key) {
        lock.lock ();
        try {
            queue.removeFirstOccurrence ( key );
            queue.addFirst ( key );
        } finally {
            lock.unlock ();
        }

    }

    private void removeFirstOccurrence(KEY key) {
        lock.lock ();
        try {
            queue.removeFirstOccurrence ( key );
        } finally {
            lock.unlock ();
        }

    }


    @Override
    public VALUE getSilent ( KEY key ) {
        return map.get ( key );
    }

    @Override
    public void remove ( KEY key ) {
        removeFirstOccurrence ( key );
        map.remove ( key );
    }

    @Override
    public int size () {
        return map.size ();
    }

    public String toString () {
        return map.toString ();
    }
}

The main differences are the use of the ConcurrentHashMap instead of HashMap, and the use of the Lock (I could have gotten away with synchronized, but...).

I have not tested it under fire, but it seems like a simple LRU cache that might work out in 80% of use cases where you need a simple LRU map.

I welcome feedback, except the why don't you use library a, b, or c. The reason I don't always use a library is because I don't always want every war file to be 80MB, and I write libraries so I tend to make the libs plug-able with a good enough solution in place and someone can plug-in another cache provider if they like. :) I never know when someone might need Guava or ehcache or something else I don't want to include them, but if I make caching plug-able, I will not exclude them either.

Reduction of dependencies has its own reward. I love to get some feedback on how to make this even simpler or faster or both.

Also if anyone knows of a ready to go....

Ok.. I know what you are thinking... Why doesn't he just use removeEldest entry from LinkedHashMap, and well I should but.... but.. but.. That would be a FIFO not an LRU and we were trying to implement a LRU.

    Map<KEY, VALUE> map = new LinkedHashMap<KEY, VALUE> () {

        @Override
        protected boolean removeEldestEntry ( Map.Entry<KEY, VALUE> eldest ) {
            return this.size () > limit;
        }
    };

This test fails for the above code...

        cache.get ( 2 );
        cache.get ( 3 );
        cache.put ( 6, 6 );
        cache.put ( 7, 7 );
        ok |= cache.size () == 4 || die ( "size" + cache.size () );
        ok |= cache.getSilent ( 2 ) == 2 || die ();
        ok |= cache.getSilent ( 3 ) == 3 || die ();
        ok |= cache.getSilent ( 4 ) == null || die ();
        ok |= cache.getSilent ( 5 ) == null || die ();

So here is a quick and dirty FIFO cache using removeEldestEntry.

import java.util.*;

public class FifoCache<KEY, VALUE> implements LruCache<KEY,VALUE> {

    final int limit;

    Map<KEY, VALUE> map = new LinkedHashMap<KEY, VALUE> () {

        @Override
        protected boolean removeEldestEntry ( Map.Entry<KEY, VALUE> eldest ) {
            return this.size () > limit;
        }
    };


    public LruCacheNormal ( int limit ) {
        this.limit = limit;
    }

    public void put ( KEY key, VALUE value ) {
         map.put ( key, value );


    }


    public VALUE get ( KEY key ) {

        return map.get ( key );
    }


    public VALUE getSilent ( KEY key ) {

        return map.get ( key );
    }

    public void remove ( KEY key ) {
        map.remove ( key );
    }

    public int size () {
        return map.size ();
    }

    public String toString() {
        return map.toString ();
    }
}

FIFOs are fast. No searching around. You could front a FIFO in front of an LRU and that would handle most hot entries quite nicely. A better LRU is going to need that reverse element to Node feature.

Anyway... now that I wrote some code, let me go through the other answers and see what I missed... the first time I scanned them.




Android offers an implementation of an LRU Cache. The code is clean and straightforward.




Here's my own implementation to this problem

simplelrucache provides threadsafe, very simple, non-distributed LRU caching with TTL support. It provides two implementations:

  • Concurrent based on ConcurrentLinkedHashMap
  • Synchronized based on LinkedHashMap

You can find it here: http://code.google.com/p/simplelrucache/







Wanted to add comment to the answer given by Hank but some how I am not able to - please treat it as comment

LinkedHashMap maintains access order as well based on parameter passed in its constructor It keeps doubly lined list to maintain order (See LinkedHashMap.Entry)

@Pacerier it is correct that LinkedHashMap keeps same order while iteration if element is added again but that is only in case of insertion order mode.

this is what I found in java docs of LinkedHashMap.Entry object

    /**
     * This method is invoked by the superclass whenever the value
     * of a pre-existing entry is read by Map.get or modified by Map.set.
     * If the enclosing Map is access-ordered, it moves the entry
     * to the end of the list; otherwise, it does nothing.
     */
    void recordAccess(HashMap<K,V> m) {
        LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m;
        if (lm.accessOrder) {
            lm.modCount++;
            remove();
            addBefore(lm.header);
        }
    }

this method takes care of moving recently accessed element to end of the list. So all in all LinkedHashMap is best data structure for implementing LRUCache.




Have a look at ConcurrentSkipListMap. It should give you log(n) time for testing and removing an element if it is already contained in the cache, and constant time for re-adding it.

You'd just need some counter etc and wrapper element to force ordering of the LRU order and ensure recent stuff is discarded when the cache is full.




LRU Cache can be implemented using a ConcurrentLinkedQueue and a ConcurrentHashMap which can be used in multithreading scenario as well. The head of the queue is that element that has been on the queue the longest time. The tail of the queue is that element that has been on the queue the shortest time. When an element exists in the Map, we can remove it from the LinkedQueue and insert it at the tail.

import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentLinkedQueue;

public class LRUCache<K,V> {
  private ConcurrentHashMap<K,V> map;
  private ConcurrentLinkedQueue<K> queue;
  private final int size; 

  public LRUCache(int size) {
    this.size = size;
    map = new ConcurrentHashMap<K,V>(size);
    queue = new ConcurrentLinkedQueue<K>();
  }

  public V get(K key) {
    //Recently accessed, hence move it to the tail
    queue.remove(key);
    queue.add(key);
    return map.get(key);
  }

  public void put(K key, V value) {
    //ConcurrentHashMap doesn't allow null key or values
    if(key == null || value == null) throw new NullPointerException();
    if(map.containsKey(key) {
      queue.remove(key);
    }
    if(queue.size() >= size) {
      K lruKey = queue.poll();
      if(lruKey != null) {
        map.remove(lruKey);
      }
    }
    queue.add(key);
    map.put(key,value);
  }

}