[python] Adding a Method to an Existing Object Instance



Answers

Module new is deprecated since python 2.6 and removed in 3.0, use types

see http://docs.python.org/library/new.html

In the example below I've deliberately removed return value from patch_me() function. I think that giving return value may make one believe that patch returns a new object, which is not true - it modifies the incoming one. Probably this can facilitate a more disciplined use of monkeypatching.

import types

class A(object):#but seems to work for old style objects too
    pass

def patch_me(target):
    def method(target,x):
        print "x=",x
        print "called from", target
    target.method = types.MethodType(method,target)
    #add more if needed

a = A()
print a
#out: <__main__.A object at 0x2b73ac88bfd0>  
patch_me(a)    #patch instance
a.method(5)
#out: x= 5
#out: called from <__main__.A object at 0x2b73ac88bfd0>
patch_me(A)
A.method(6)        #can patch class too
#out: x= 6
#out: called from <class '__main__.A'>
Question

I've read that it is possible to add a method to an existing object (i.e., not in the class definition) in Python.

I understand that it's not always good to do so. But how might one do this?




There are at least two ways for attach a method to an instance without types.MethodType:

>>> class A:
...  def m(self):
...   print 'im m, invoked with: ', self

>>> a = A()
>>> a.m()
im m, invoked with:  <__main__.A instance at 0x973ec6c>
>>> a.m
<bound method A.m of <__main__.A instance at 0x973ec6c>>
>>> 
>>> def foo(firstargument):
...  print 'im foo, invoked with: ', firstargument

>>> foo
<function foo at 0x978548c>

1:

>>> a.foo = foo.__get__(a, A) # or foo.__get__(a, type(a))
>>> a.foo()
im foo, invoked with:  <__main__.A instance at 0x973ec6c>
>>> a.foo
<bound method A.foo of <__main__.A instance at 0x973ec6c>>

2:

>>> instancemethod = type(A.m)
>>> instancemethod
<type 'instancemethod'>
>>> a.foo2 = instancemethod(foo, a, type(a))
>>> a.foo2()
im foo, invoked with:  <__main__.A instance at 0x973ec6c>
>>> a.foo2
<bound method instance.foo of <__main__.A instance at 0x973ec6c>>

Useful links:
Data model - invoking descriptors
Descriptor HowTo Guide - invoking descriptors




What you're looking for is setattr I believe. Use this to set an attribute on an object.

>>> def printme(s): print repr(s)
>>> class A: pass
>>> setattr(A,'printme',printme)
>>> a = A()
>>> a.printme() # s becomes the implicit 'self' variable
< __ main __ . A instance at 0xABCDEFG>



If it can be of any help, I recently released a Python library named Gorilla to make the process of monkey patching more convenient.

Using a function needle() to patch a module named guineapig goes as follows:

import gorilla
import guineapig
@gorilla.patch(guineapig)
def needle():
    print("awesome")

But it also takes care of more interesting use cases as shown in the FAQ from the documentation.

The code is available on GitHub.




Consolidating Jason Pratt's and the community wiki answers, with a look at the results of different methods of binding:

Especially note how adding the binding function as a class method works, but the referencing scope is incorrect.

#!/usr/bin/python -u
import types
import inspect

## dynamically adding methods to a unique instance of a class


# get a list of a class's method type attributes
def listattr(c):
    for m in [(n, v) for n, v in inspect.getmembers(c, inspect.ismethod) if isinstance(v,types.MethodType)]:
        print m[0], m[1]

# externally bind a function as a method of an instance of a class
def ADDMETHOD(c, method, name):
    c.__dict__[name] = types.MethodType(method, c)

class C():
    r = 10 # class attribute variable to test bound scope

    def __init__(self):
        pass

    #internally bind a function as a method of self's class -- note that this one has issues!
    def addmethod(self, method, name):
        self.__dict__[name] = types.MethodType( method, self.__class__ )

    # predfined function to compare with
    def f0(self, x):
        print 'f0\tx = %d\tr = %d' % ( x, self.r)

a = C() # created before modified instnace
b = C() # modified instnace


def f1(self, x): # bind internally
    print 'f1\tx = %d\tr = %d' % ( x, self.r )
def f2( self, x): # add to class instance's .__dict__ as method type
    print 'f2\tx = %d\tr = %d' % ( x, self.r )
def f3( self, x): # assign to class as method type
    print 'f3\tx = %d\tr = %d' % ( x, self.r )
def f4( self, x): # add to class instance's .__dict__ using a general function
    print 'f4\tx = %d\tr = %d' % ( x, self.r )


b.addmethod(f1, 'f1')
b.__dict__['f2'] = types.MethodType( f2, b)
b.f3 = types.MethodType( f3, b)
ADDMETHOD(b, f4, 'f4')


b.f0(0) # OUT: f0   x = 0   r = 10
b.f1(1) # OUT: f1   x = 1   r = 10
b.f2(2) # OUT: f2   x = 2   r = 10
b.f3(3) # OUT: f3   x = 3   r = 10
b.f4(4) # OUT: f4   x = 4   r = 10


k = 2
print 'changing b.r from {0} to {1}'.format(b.r, k)
b.r = k
print 'new b.r = {0}'.format(b.r)

b.f0(0) # OUT: f0   x = 0   r = 2
b.f1(1) # OUT: f1   x = 1   r = 10  !!!!!!!!!
b.f2(2) # OUT: f2   x = 2   r = 2
b.f3(3) # OUT: f3   x = 3   r = 2
b.f4(4) # OUT: f4   x = 4   r = 2

c = C() # created after modifying instance

# let's have a look at each instance's method type attributes
print '\nattributes of a:'
listattr(a)
# OUT:
# attributes of a:
# __init__ <bound method C.__init__ of <__main__.C instance at 0x000000000230FD88>>
# addmethod <bound method C.addmethod of <__main__.C instance at 0x000000000230FD88>>
# f0 <bound method C.f0 of <__main__.C instance at 0x000000000230FD88>>

print '\nattributes of b:'
listattr(b)
# OUT:
# attributes of b:
# __init__ <bound method C.__init__ of <__main__.C instance at 0x000000000230FE08>>
# addmethod <bound method C.addmethod of <__main__.C instance at 0x000000000230FE08>>
# f0 <bound method C.f0 of <__main__.C instance at 0x000000000230FE08>>
# f1 <bound method ?.f1 of <class __main__.C at 0x000000000237AB28>>
# f2 <bound method ?.f2 of <__main__.C instance at 0x000000000230FE08>>
# f3 <bound method ?.f3 of <__main__.C instance at 0x000000000230FE08>>
# f4 <bound method ?.f4 of <__main__.C instance at 0x000000000230FE08>>

print '\nattributes of c:'
listattr(c)
# OUT:
# attributes of c:
# __init__ <bound method C.__init__ of <__main__.C instance at 0x0000000002313108>>
# addmethod <bound method C.addmethod of <__main__.C instance at 0x0000000002313108>>
# f0 <bound method C.f0 of <__main__.C instance at 0x0000000002313108>>

Personally, I prefer the external ADDMETHOD function route, as it allows me to dynamically assign new method names within an iterator as well.

def y(self, x):
    pass
d = C()
for i in range(1,5):
    ADDMETHOD(d, y, 'f%d' % i)
print '\nattributes of d:'
listattr(d)
# OUT:
# attributes of d:
# __init__ <bound method C.__init__ of <__main__.C instance at 0x0000000002303508>>
# addmethod <bound method C.addmethod of <__main__.C instance at 0x0000000002303508>>
# f0 <bound method C.f0 of <__main__.C instance at 0x0000000002303508>>
# f1 <bound method ?.y of <__main__.C instance at 0x0000000002303508>>
# f2 <bound method ?.y of <__main__.C instance at 0x0000000002303508>>
# f3 <bound method ?.y of <__main__.C instance at 0x0000000002303508>>
# f4 <bound method ?.y of <__main__.C instance at 0x0000000002303508>>



I think that the above answers missed the key point.

Let's have a class with a method:

class A(object):
    def m(self):
        pass

Now, let's play with it in ipython:

In [2]: A.m
Out[2]: <unbound method A.m>

Ok, so m() somehow becomes an unbound method of A. But is it really like that?

In [5]: A.__dict__['m']
Out[5]: <function m at 0xa66b8b4>

It turns out that m() is just a function, reference to which is added to A class dictionary - there's no magic. Then why A.m gives us an unbound method? It's because the dot is not translated to a simple dictionary lookup. It's de facto a call of A.__class__.__getattribute__(A, 'm'):

In [11]: class MetaA(type):
   ....:     def __getattribute__(self, attr_name):
   ....:         print str(self), '-', attr_name

In [12]: class A(object):
   ....:     __metaclass__ = MetaA

In [23]: A.m
<class '__main__.A'> - m
<class '__main__.A'> - m

Now, I'm not sure out of the top of my head why the last line is printed twice, but still it's clear what's going on there.

Now, what the default __getattribute__ does is that it checks if the attribute is a so-called descriptor or not, i.e. if it implements a special __get__ method. If it implements that method, then what is returned is the result of calling that __get__ method. Going back to the first version of our A class, this is what we have:

In [28]: A.__dict__['m'].__get__(None, A)
Out[28]: <unbound method A.m>

And because Python functions implement the descriptor protocol, if they are called on behalf of an object, they bind themselves to that object in their __get__ method.

Ok, so how to add a method to an existing object? Assuming you don't mind patching class, it's as simple as:

B.m = m

Then B.m "becomes" an unbound method, thanks to the descriptor magic.

And if you want to add a method just to a single object, then you have to emulate the machinery yourself, by using types.MethodType:

b.m = types.MethodType(m, b)

By the way:

In [2]: A.m
Out[2]: <unbound method A.m>

In [59]: type(A.m)
Out[59]: <type 'instancemethod'>

In [60]: type(b.m)
Out[60]: <type 'instancemethod'>

In [61]: types.MethodType
Out[61]: <type 'instancemethod'>



I don't know Python syntax, but I know Ruby can do it, and it is rather trivial. Let's say you want to add a method to Array that prints the length to standard out:

class Array
  def print_length
    puts length
  end
end

If you don't want to modify the whole class, you can just add the method to a single instance of the array, and no other arrays will have the method:

array = [1, 2, 3]
def array.print_length
  puts length
end

Just be aware of the issues involved in using this feature. Jeff Atwood actually wrote about it not too long ago.




This is actually an addon to the answer of "Jason Pratt"

Although Jasons answer works, it does only work if one wants to add a function to a class. It did not work for me when I tried to reload an already existing method from the .py source code file.

It took me for ages to find a workaround, but the trick seems simple... 1.st import the code from the source code file 2.nd force a reload 3.rd use types.FunctionType(...) to convert the imported and bound method to a function you can also pass on the current global variables, as the reloaded method would be in a different namespace 4.th now you can continue as suggested by "Jason Pratt" using the types.MethodType(...)

Example:

# this class resides inside ReloadCodeDemo.py
class A:
    def bar( self ):
        print "bar1"

    def reloadCode(self, methodName):
        ''' use this function to reload any function of class A'''
        import types
        import ReloadCodeDemo as ReloadMod # import the code as module
        reload (ReloadMod) # force a reload of the module
        myM = getattr(ReloadMod.A,methodName) #get reloaded Method
        myTempFunc = types.FunctionType(# convert the method to a simple function
                                myM.im_func.func_code, #the methods code
                                globals(), # globals to use
                                argdefs=myM.im_func.func_defaults # default values for variables if any
                                ) 
        myNewM = types.MethodType(myTempFunc,self,self.__class__) #convert the function to a method
        setattr(self,methodName,myNewM) # add the method to the function

if __name__ == '__main__':
    a = A()
    a.bar()
    # now change your code and save the file
    a.reloadCode('bar') # reloads the file
    a.bar() # now executes the reloaded code



I find it strange that nobody mentioned that all of the methods listed above creates a cycle reference between the added method and the instance, causing the object to be persistent till garbage collection. There was an old trick adding a descriptor by extending the class of the object:

def addmethod(obj, name, func):
    klass = obj.__class__
    subclass = type(klass.__name__, (klass,), {})
    setattr(subclass, name, func)
    obj.__class__ = subclass



Links