How to force a static member to be initialized?


Is there any way to force dummy to be initialized (effectively calling register_) without any instance of Bar or Foo (no instances, so no constructor trickery)?

Wouldn't this be sufficient?

std::cout << Foo<int>::dummy;

Consider this example code:

template<class D>
char register_(){
    return D::get_dummy(); // static function

template<class D>
struct Foo{
    static char const dummy;

template<class D>
char const Foo<D>::dummy = register_<D>();

struct Bar
    : Foo<Bar>
    static char const get_dummy() { return 42; }

(Also on Ideone.)

I'd expect dummy to get initialized as soon as there is a concrete instantiation of Foo, which I have with Bar. This question (and the standard quote at the end) explained pretty clear, why that's not happening.

[...] in particular, the initialization (and any associated side-effects) of a static data member does not occur unless the static data member is itself used in a way that requires the definition of the static data member to exist.

Is there any way to force dummy to be initialized (effectively calling register_) without any instance of Bar or Foo (no instances, so no constructor trickery) and without the user of Foo needing to explicitly state the member in some way? Extra cookies for not needing the derived class to do anything.

Edit: Found a way with minimal impact on the derived class:

struct Bar
    : Foo<Bar>
{   //                              vvvvvvvvvvvv
    static char const get_dummy() { (void)dummy; return 42; }

Though, I'd still like the derived class not having to do that. :|

C++ Static member initalization (template fun inside)

This was discussed on usenet some time ago, while i was trying to answer another question on : Point of Instantiation of Static Data Members. I think it's worth reducing the test-case, and considering each scenario in isolation, so let's look at it more general first:

struct C { C(int n) { printf("%d\n", n); } };

template<int N>
struct A {
  static C c;

template<int N>
C A<N>::c(N); 

A<1> a; // implicit instantiation of A<1> and 2
A<2> b;

You have the definition of a static data member template. This does not yet create any data members, because of 14.7.1:

"... in particular, the initialization (and any associated side-effects) of a static data member does not occur unless the static data member is itself used in a way that requires the definition of the static data member to exist."

The definition of something (= entity) is needed when that entity is "used", according to the one definition rule which defines that word (at 3.2/2). In particular, if all references are from uninstantiated templates, members of a template or a sizeof expressions or similar things that don't "use" the entity (since they are either not potentially evaluating it, or they just don't exist yet as functions/member functions that are itself used), such a static data member is not instantiated.

An implicit instantiation by 14.7.1/7 instantiates declarations of static data members - that is to say, it will instantiate any template needed to process that declaration. It won't, however, instantiate definitions - that is to say, initializers are not instantiated and constructors of the type of that static data member are not implicitly defined (marked as used).

That all means, the above code will output nothing yet. Let's cause implicit instantiations of the static data members now.

int main() { 
  A<1>::c; // reference them

This will cause the two static data members to exist, but the question is - how is the order of initialization? On a simple read, one might think that 3.6.2/1 applies, which says (emphasis by me):

"Objects with static storage duration defined in namespace scope in the same translation unit and dynamically initialized shall be initialized in the order in which their definition appears in the translation unit."

Now as said in the usenet post and explained in this defect report, these static data members are not defined in a translation unit, but they are instantiated in a instantiation unit, as explained at 2.1/1:

Each translated translation unit is examined to produce a list of required instantiations. [Note: this may include instantiations which have been explicitly requested (14.7.2). ] The definitions of the required templates are located. It is implementation-defined whether the source of the translation units containing these definitions is required to be available. [Note: an implementation could encode sufficient information into the translated translation unit so as to ensure the source is not required here. ] All the required instantiations are performed to produce instantiation units. [Note: these are similar to translated translation units, but contain no references to uninstantiated templates and no template definitions. ] The program is ill-formed if any instantiation fails.

The Point of Instantiation of such a member also does not really matter, because such a point of instantiation is the context link between an instantiation and its translation units - it defines the declarations that are visible (as specified at, and each of those point of instantiations must give instantiations the same meaning, as specified in the one definition rule at 3.2/5, last bullet).

If we want ordered initialization, we have to arrange so we don't mess with instantiations, but with explicit declarations - this is the area of explicit specializations, as these are not really different to normal declarations. In fact, C++0x changed its wording of 3.6.2 to the following:

Dynamic initialization of a non-local object with static storage duration is either ordered or unordered. Definitions of explicitly specialized class template static data members have ordered initialization. Other class template static data members (i.e., implicitly or explicitly instantiated specializations) have unordered initialization.

This means to your code, that:

  • [1] and [2] commented: No reference to the static data members exist, so their definitions (and also not their declarations, since there is no need for instantiation of B<int>) are not instantiated. No side effect occurs.
  • [1] uncommented: B<int>::getB() is used, which in itself uses B<int>::mB, which requires that static member to exist. The string is initialized prior to main (at any case before that statement, as part of initializing non-local objects). Nothing uses B<int>::mInit, so it's not instantiated, and so no object of B<int>::InitHelper is ever created, which makes its constructor not being used, which in turn will never assign something to B<int>::mB: You will just output an empty string.
  • [1] and [2] uncommented: That this worked for you is luck (or the opposite :)). There is no requirement for a particular order of initialization calls, as explained above. It might work on VC++, fail on GCC and work on clang. We don't know.
  • [1] commented, [2] uncommented: Same problem - again, both static data members are used: B<int>::mInit is used by B<int>::getHelper, and the instantiation of B<int>::mInit will cause its constructor to be instantiated, which will use B<int>::mB - but for your compiler, the order is different in this particular run (unspecified behavior is not required to be consistent among different runs): It initializes B<int>::mInit first, which will operate on a not-yet-constructed string object.

  • [1] uncommented case: It is ok. static InitHelper B<int>::mInit does not exist. If member of the template class (struct) is not used it does not compiled.

  • [1] and [2] uncommented case: It is ok. B<int>::getHelper() use static InitHelper B<int>::mInit and mInit exists.

  • [1] commented, [2] uncommented: it works for me in VS2008.