# [algorithm] Calculate distance between two latitude-longitude points? (Haversine formula)

I needed to calculate a lot of distances between the points for my project, so I went ahead and tried to optimize the code, I have found here. On average in different browsers my new implementation **runs 2 times faster** than the most upvoted answer.

```
function distance(lat1, lon1, lat2, lon2) {
var p = 0.017453292519943295; // Math.PI / 180
var c = Math.cos;
var a = 0.5 - c((lat2 - lat1) * p)/2 +
c(lat1 * p) * c(lat2 * p) *
(1 - c((lon2 - lon1) * p))/2;
return 12742 * Math.asin(Math.sqrt(a)); // 2 * R; R = 6371 km
}
```

You can play with my jsPerf and see the results here.

Recently I needed to do the same in python, so here is a **python implementation**:

```
from math import cos, asin, sqrt
def distance(lat1, lon1, lat2, lon2):
p = 0.017453292519943295 #Pi/180
a = 0.5 - cos((lat2 - lat1) * p)/2 + cos(lat1 * p) * cos(lat2 * p) * (1 - cos((lon2 - lon1) * p)) / 2
return 12742 * asin(sqrt(a)) #2*R*asin...
```

And for the sake of completeness: Haversine on wiki.

How do I calculate the distance between two points specified by latitude and longitude?

For clarification, I'd like the distance in kilometers; the points use the WGS84 system and I'd like to understand the relative accuracies of the approaches available.

I don't like adding yet another answer, but the Google maps API v.3 has spherical geometry (and more). After converting your WGS84 to decimal degrees you can do this:

```
<script src="http://maps.google.com/maps/api/js?sensor=false&libraries=geometry" type="text/javascript"></script>
distance = google.maps.geometry.spherical.computeDistanceBetween(
new google.maps.LatLng(fromLat, fromLng),
new google.maps.LatLng(toLat, toLng));
```

No word about how accurate Google's calculations are or even what model is used (though it does say "spherical" rather than "geoid". By the way, the "straight line" distance will obviously be different from the distance if one travels on the surface of the earth which is what everyone seems to be presuming.

Here is a java implementation of the Haversine formula.

```
public final static double AVERAGE_RADIUS_OF_EARTH_KM = 6371;
public int calculateDistanceInKilometer(double userLat, double userLng,
double venueLat, double venueLng) {
double latDistance = Math.toRadians(userLat - venueLat);
double lngDistance = Math.toRadians(userLng - venueLng);
double a = Math.sin(latDistance / 2) * Math.sin(latDistance / 2)
+ Math.cos(Math.toRadians(userLat)) * Math.cos(Math.toRadians(venueLat))
* Math.sin(lngDistance / 2) * Math.sin(lngDistance / 2);
double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
return (int) (Math.round(AVERAGE_RADIUS_OF_EARTH_KM * c));
}
```

Note that here we are rounding the answer to the nearest km.

```
function getDistanceFromLatLonInKm(position1, position2) {
"use strict";
var deg2rad = function (deg) { return deg * (Math.PI / 180); },
R = 6371,
dLat = deg2rad(position2.lat - position1.lat),
dLng = deg2rad(position2.lng - position1.lng),
a = Math.sin(dLat / 2) * Math.sin(dLat / 2)
+ Math.cos(deg2rad(position1.lat))
* Math.cos(deg2rad(position1.lat))
* Math.sin(dLng / 2) * Math.sin(dLng / 2),
c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
return R * c;
}
console.log(getDistanceFromLatLonInKm(
{lat: 48.7931459, lng: 1.9483572},
{lat: 48.827167, lng: 2.2459745}
));
```

I condensed the computation down by simplifying the formula.

Here it is in Ruby:

```
include Math
earth_radius_mi = 3959
radians = lambda { |deg| deg * PI / 180 }
coord_radians = lambda { |c| { :lat => radians[c[:lat]], :lng => radians[c[:lng]] } }
# from/to = { :lat => (latitude_in_degrees), :lng => (longitude_in_degrees) }
def haversine_distance(from, to)
from, to = coord_radians[from], coord_radians[to]
cosines_product = cos(to[:lat]) * cos(from[:lat]) * cos(from[:lng] - to[:lng])
sines_product = sin(to[:lat]) * sin(from[:lat])
return earth_radius_mi * acos(cosines_product + sines_product)
end
```

To calculate the distance between two points on a sphere you need to do the Great Circle calculation.

There are a number of C/C++ libraries to help with map projection at MapTools if you need to reproject your distances to a flat surface. To do this you will need the projection string of the various coordinate systems.

You may also find MapWindow a useful tool to visualise the points. Also as its open source its a useful guide to how to use the proj.dll library, which appears to be the core open source projection library.

This is a simple PHP function that will give a very reasonable approximation (under +/-1% error margin).

```
<?php
function distance($lat1, $lon1, $lat2, $lon2) {
$pi80 = M_PI / 180;
$lat1 *= $pi80;
$lon1 *= $pi80;
$lat2 *= $pi80;
$lon2 *= $pi80;
$r = 6372.797; // mean radius of Earth in km
$dlat = $lat2 - $lat1;
$dlon = $lon2 - $lon1;
$a = sin($dlat / 2) * sin($dlat / 2) + cos($lat1) * cos($lat2) * sin($dlon / 2) * sin($dlon / 2);
$c = 2 * atan2(sqrt($a), sqrt(1 - $a));
$km = $r * $c;
//echo '<br/>'.$km;
return $km;
}
?>
```

As said before; the earth is NOT a sphere. It is like an old, old baseball that Mark McGwire decided to practice with - it is full of dents and bumps. The simpler calculations (like this) treat it like a sphere.

Different methods may be more or less precise according to where you are on this irregular ovoid AND how far apart your points are (the closer they are the smaller the absolute error margin). The more precise your expectation, the more complex the math.

For more info: wikipedia geographic distance

The haversine is definitely a good formula for probably most cases, other answers already include it so I am not going to take the space. But it is important to note that no matter what formula is used (yes not just one). Because of the huge range of accuracy possible as well as the computation time required. The choice of formula requires a bit more thought than a simple no brainer answer.

This posting from a person at nasa, is the best one I found at discussing the options

http://www.cs.nyu.edu/visual/home/proj/tiger/gisfaq.html

For example, if you are just sorting rows by distance in a 100 miles radius. The flat earth formula will be much faster than the haversine.

```
HalfPi = 1.5707963;
R = 3956; /* the radius gives you the measurement unit*/
a = HalfPi - latoriginrad;
b = HalfPi - latdestrad;
u = a * a + b * b;
v = - 2 * a * b * cos(longdestrad - longoriginrad);
c = sqrt(abs(u + v));
return R * c;
```

Notice there is just one cosine and one square root. Vs 9 of them on the Haversine formula.

there is a good example in here to calculate distance with PHP http://www.geodatasource.com/developers/php :

```
function distance($lat1, $lon1, $lat2, $lon2, $unit) {
$theta = $lon1 - $lon2;
$dist = sin(deg2rad($lat1)) * sin(deg2rad($lat2)) + cos(deg2rad($lat1)) * cos(deg2rad($lat2)) * cos(deg2rad($theta));
$dist = acos($dist);
$dist = rad2deg($dist);
$miles = $dist * 60 * 1.1515;
$unit = strtoupper($unit);
if ($unit == "K") {
return ($miles * 1.609344);
} else if ($unit == "N") {
return ($miles * 0.8684);
} else {
return $miles;
}
}
```

In the other answers an implementation in r is missing.

Calculating the distance between two point is quite straightforward with the `distm`

function from the `geosphere`

package:

```
distm(p1, p2, fun = distHaversine)
```

where:

```
p1 = longitude/latitude for point(s)
p2 = longitude/latitude for point(s)
# type of distance calculation
fun = distCosine / distHaversine / distVincentySphere / distVincentyEllipsoid
```

As the earth is not perfectly spherical, the Vincenty formula for ellipsoids is probably the best way to calculate distances. Thus in the `geosphere`

package you use then:

```
distm(p1, p2, fun = distVincentyEllipsoid)
```

Off course you don't necessarily have to use `geosphere`

package, you can also calculate the distance in base `R`

with a function:

```
hav.dist <- function(long1, lat1, long2, lat2) {
R <- 6371
diff.long <- (long2 - long1)
diff.lat <- (lat2 - lat1)
a <- sin(diff.lat/2)^2 + cos(lat1) * cos(lat2) * sin(diff.long/2)^2
c <- 2 * asin(pmin(1, sqrt(a)))
d = R * c
return(d)
}
```

Here's the accepted answer implementation ported to Java in case anyone needs it.

```
package com.project529.garage.util;
/**
* Mean radius.
*/
private static double EARTH_RADIUS = 6371;
/**
* Returns the distance between two sets of latitudes and longitudes in meters.
* <p/>
* Based from the following JavaScript SO answer:
* http://.com/questions/27928/calculate-distance-between-two-latitude-longitude-points-haversine-formula,
* which is based on https://en.wikipedia.org/wiki/Haversine_formula (error rate: ~0.55%).
*/
public double getDistanceBetween(double lat1, double lon1, double lat2, double lon2) {
double dLat = toRadians(lat2 - lat1);
double dLon = toRadians(lon2 - lon1);
double a = Math.sin(dLat / 2) * Math.sin(dLat / 2) +
Math.cos(toRadians(lat1)) * Math.cos(toRadians(lat2)) *
Math.sin(dLon / 2) * Math.sin(dLon / 2);
double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
double d = EARTH_RADIUS * c;
return d;
}
public double toRadians(double degrees) {
return degrees * (Math.PI / 180);
}
```

Here's a simple javascript function that may be useful from this link.. somehow related but we're using google earth javascript plugin instead of maps

```
function getApproximateDistanceUnits(point1, point2) {
var xs = 0;
var ys = 0;
xs = point2.getX() - point1.getX();
xs = xs * xs;
ys = point2.getY() - point1.getY();
ys = ys * ys;
return Math.sqrt(xs + ys);
}
```

The units tho are not in distance but in terms of a ratio relative to your coordinates. There are other computations related you can substitute for the getApproximateDistanceUnits function link here

Then I use this function to see if a latitude longitude is within the radius

```
function isMapPlacemarkInRadius(point1, point2, radi) {
if (point1 && point2) {
return getApproximateDistanceUnits(point1, point2) <= radi;
} else {
return 0;
}
}
```

point may be defined as

```
$$.getPoint = function(lati, longi) {
var location = {
x: 0,
y: 0,
getX: function() { return location.x; },
getY: function() { return location.y; }
};
location.x = lati;
location.y = longi;
return location;
};
```

then you can do your thing to see if a point is within a region with a radius say:

```
//put it on the map if within the range of a specified radi assuming 100,000,000 units
var iconpoint = Map.getPoint(pp.latitude, pp.longitude);
var centerpoint = Map.getPoint(Settings.CenterLatitude, Settings.CenterLongitude);
//approx ~200 units to show only half of the globe from the default center radius
if (isMapPlacemarkInRadius(centerpoint, iconpoint, 120)) {
addPlacemark(pp.latitude, pp.longitude, pp.name);
}
else {
otherSidePlacemarks.push({
latitude: pp.latitude,
longitude: pp.longitude,
name: pp.name
});
}
```

All the above answers assumes the earth is a sphere. However, a more accurate approximation would be that of an oblate spheroid.

```
a= 6378.137#equitorial radius in km
b= 6356.752#polar radius in km
def Distance(lat1, lons1, lat2, lons2):
lat1=math.radians(lat1)
lons1=math.radians(lons1)
R1=(((((a**2)*math.cos(lat1))**2)+(((b**2)*math.sin(lat1))**2))/((a*math.cos(lat1))**2+(b*math.sin(lat1))**2))**0.5 #radius of earth at lat1
x1=R*math.cos(lat1)*math.cos(lons1)
y1=R*math.cos(lat1)*math.sin(lons1)
z1=R*math.sin(lat1)
lat2=math.radians(lat2)
lons2=math.radians(lons2)
R1=(((((a**2)*math.cos(lat2))**2)+(((b**2)*math.sin(lat2))**2))/((a*math.cos(lat2))**2+(b*math.sin(lat2))**2))**0.5 #radius of earth at lat2
x2=R*math.cos(lat2)*math.cos(lons2)
y2=R*math.cos(lat2)*math.sin(lons2)
z2=R*math.sin(lat2)
return ((x1-x2)**2+(y1-y2)**2+(z1-z2)**2)**0.5
```

Here is my java implementation for calculation distance via decimal degrees after some search. I used mean radius of world (from wikipedia) in km. İf you want result miles then use world radius in miles.

```
public static double distanceLatLong2(double lat1, double lng1, double lat2, double lng2)
{
double earthRadius = 6371.0d; // KM: use mile here if you want mile result
double dLat = toRadian(lat2 - lat1);
double dLng = toRadian(lng2 - lng1);
double a = Math.pow(Math.sin(dLat/2), 2) +
Math.cos(toRadian(lat1)) * Math.cos(toRadian(lat2)) *
Math.pow(Math.sin(dLng/2), 2);
double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
return earthRadius * c; // returns result kilometers
}
public static double toRadian(double degrees)
{
return (degrees * Math.PI) / 180.0d;
}
```

```
//JAVA
public Double getDistanceBetweenTwoPoints(Double latitude1, Double longitude1, Double latitude2, Double longitude2) {
final int RADIUS_EARTH = 6371;
double dLat = getRad(latitude2 - latitude1);
double dLong = getRad(longitude2 - longitude1);
double a = Math.sin(dLat / 2) * Math.sin(dLat / 2) + Math.cos(getRad(latitude1)) * Math.cos(getRad(latitude2)) * Math.sin(dLong / 2) * Math.sin(dLong / 2);
double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
return (RADIUS_EARTH * c) * 1000;
}
private Double getRad(Double x) {
return x * Math.PI / 180;
}
```