[c#] ¿Existe alguna restricción que restrinja mi método genérico a los tipos numéricos?


Answers

Teniendo en cuenta la popularidad de esta pregunta y el interés detrás de dicha función, me sorprende ver que todavía no hay una respuesta que involucre a T4.

En este código de ejemplo, demostraré un ejemplo muy simple de cómo puede usar el potente motor de plantillas para hacer lo que el compilador hace prácticamente detrás de escena con los genéricos.

En lugar de pasar por aros y sacrificar la certeza del tiempo de compilación, simplemente puede generar la función que desee para cada tipo que desee y usarla en consecuencia (en tiempo de compilación).

Para hacer esto:

  • Cree un nuevo archivo de plantilla de texto llamado GenericNumberMethodTemplate.tt .
  • Elimine el código generado automáticamente (conservará la mayor parte, pero no es necesario).
  • Agregue el siguiente fragmento:
<#@ template language="C#" #>
<#@ output extension=".cs" #>
<#@ assembly name="System.Core" #>

<# Type[] types = new[] {
    typeof(Int16), typeof(Int32), typeof(Int64),
    typeof(UInt16), typeof(UInt32), typeof(UInt64)
    };
#>

using System;
public static class MaxMath {
    <# foreach (var type in types) { 
    #>
        public static <#= type.Name #> Max (<#= type.Name #> val1, <#= type.Name #> val2) {
            return val1 > val2 ? val1 : val2;
        }
    <#
    } #>
}

Eso es. Ya terminaste.

Al guardar este archivo, se compilará automáticamente en este archivo fuente:

using System;
public static class MaxMath {
    public static Int16 Max (Int16 val1, Int16 val2) {
        return val1 > val2 ? val1 : val2;
    }
    public static Int32 Max (Int32 val1, Int32 val2) {
        return val1 > val2 ? val1 : val2;
    }
    public static Int64 Max (Int64 val1, Int64 val2) {
        return val1 > val2 ? val1 : val2;
    }
    public static UInt16 Max (UInt16 val1, UInt16 val2) {
        return val1 > val2 ? val1 : val2;
    }
    public static UInt32 Max (UInt32 val1, UInt32 val2) {
        return val1 > val2 ? val1 : val2;
    }
    public static UInt64 Max (UInt64 val1, UInt64 val2) {
        return val1 > val2 ? val1 : val2;
    }
}

En su método main puede verificar que tiene certeza en tiempo de compilación:

namespace TTTTTest
{
    class Program
    {
        static void Main(string[] args)
        {
            long val1 = 5L;
            long val2 = 10L;
            Console.WriteLine(MaxMath.Max(val1, val2));
            Console.Read();
        }
    }
}

Voy a adelantar una observación: no, esto no es una violación del principio DRY. El principio DRY está ahí para evitar que las personas dupliquen el código en varios lugares, lo que haría que la aplicación sea difícil de mantener.

Este no es el caso aquí: si quiere un cambio, puede simplemente cambiar la plantilla (¡una sola fuente para toda su generación!) Y listo.

Para usarlo con sus propias definiciones personalizadas, agregue una declaración de espacio de nombres (asegúrese de que sea la misma donde definirá su propia implementación) a su código generado y marque la clase como partial . Después, agregue estas líneas a su archivo de plantilla para que se incluya en la compilación final:

<#@ import namespace="TheNameSpaceYouWillUse" #>
<#@ assembly name="$(TargetPath)" #>

Seamos honestos: esto es genial.

Descargo de responsabilidad: esta muestra ha sido fuertemente influenciada por la metaprogramación en .NET por Kevin Hazzard y Jason Bock, Manning Publications .

Question

¿Puede alguien decirme si hay una forma con genéricos para limitar un argumento de tipo genérico T a solo:

  • Int16
  • Int32
  • Int64
  • UInt16
  • UInt32
  • UInt64

Soy consciente de la palabra clave where , pero no puedo encontrar una interfaz solo para estos tipos,

Algo como:

static bool IntegerFunction<T>(T value) where T : INumeric 



No hay una 'buena' solución para esto todavía. Sin embargo, puede restringir significativamente el argumento de tipo para descartar muchos inconvenientes para su restricción "INumeric" hipotética como ha demostrado Haacked anteriormente.

static Bool IntegerFunction <T> (valor T) donde T: IComparable, IFormattable, IConvertible, IComparable <T>, IEtabletable <T>, struct {...




I think you are misunderstanding generics. If the operation you are trying to perform is only good for specific data types then you are not doing something "generic".

Also, since you are only wanting to allow the function to work on int data types then you shouldn't need a separate function for each specific size. Simply taking a parameter in the largest specific type will allow the program to automatically upcast the smaller data types to it. (ie passing an Int16 will auto-convert to Int64 when calling).

If you are performing different operations based on the actual size of int being passed into the function then I would think you should seriously reconsider even trying to do what you are doing. If you have to fool the language you should think a bit more about what you are trying to accomplish rather than how to do what you want.

Failing all else, a parameter of type Object could be used and then you will have to check the type of the parameter and take appropriate action or throw an exception.




Solución alternativa mediante políticas:

interface INumericPolicy<T>
{
    T Zero();
    T Add(T a, T b);
    // add more functions here, such as multiplication etc.
}

struct NumericPolicies:
    INumericPolicy<int>,
    INumericPolicy<long>
    // add more INumericPolicy<> for different numeric types.
{
    int INumericPolicy<int>.Zero() { return 0; }
    long INumericPolicy<long>.Zero() { return 0; }
    int INumericPolicy<int>.Add(int a, int b) { return a + b; }
    long INumericPolicy<long>.Add(long a, long b) { return a + b; }
    // implement all functions from INumericPolicy<> interfaces.

    public static NumericPolicies Instance = new NumericPolicies();
}

Algoritmos:

static class Algorithms
{
    public static T Sum<P, T>(this P p, params T[] a)
        where P: INumericPolicy<T>
    {
        var r = p.Zero();
        foreach(var i in a)
        {
            r = p.Add(r, i);
        }
        return r;
    }

}

Uso:

int i = NumericPolicies.Instance.Sum(1, 2, 3, 4, 5);
long l = NumericPolicies.Instance.Sum(1L, 2, 3, 4, 5);
NumericPolicies.Instance.Sum("www", "") // compile-time error.

La solución es segura en tiempo de compilación. CityLizard Framework proporciona una versión compilada para .NET 4.0. El archivo es lib / NETFramework4.0 / CityLizard.Policy.dll.

También está disponible en Nuget: https://www.nuget.org/packages/CityLizard/ . Ver la estructura de CityLizard.Policy.I




Desafortunadamente, solo puede especificar struct en la cláusula where en esta instancia. Parece extraño que no se pueda especificar Int16, Int32, etc. específicamente, pero estoy seguro de que hay una razón de implementación profunda subyacente a la decisión de no permitir tipos de valores en una cláusula where.

Supongo que la única solución es hacer un control del tiempo de ejecución que desafortunadamente evita que el problema se recoja en el momento de la compilación. Eso sería algo así como:

static bool IntegerFunction<T>(T value) where T : struct {
  if (typeof(T) != typeof(Int16)  &&
      typeof(T) != typeof(Int32)  &&
      typeof(T) != typeof(Int64)  &&
      typeof(T) != typeof(UInt16) &&
      typeof(T) != typeof(UInt32) &&
      typeof(T) != typeof(UInt64)) {
    throw new ArgumentException(
      string.Format("Type '{0}' is not valid.", typeof(T).ToString()));
  }

  // Rest of code...
}

Lo cual es un poco feo, lo sé, pero al menos proporciona las restricciones necesarias.

También buscaría posibles implicaciones de rendimiento para esta implementación, quizás haya una manera más rápida de salir.




Si usa .NET 4.0 y posterior, entonces puede usar el argumento dinámico como método y verificar en tiempo de ejecución que el tipo de argumento dinámico pasado sea de tipo numérico / entero.

Si el tipo de la dinámica pasada no es de tipo numérico / entero, arroje la excepción.

Un ejemplo de código corto que implementa la idea es algo así como:

using System;
public class InvalidArgumentException : Exception
{
    public InvalidArgumentException(string message) : base(message) {}
}
public class InvalidArgumentTypeException : InvalidArgumentException
{
    public InvalidArgumentTypeException(string message) : base(message) {}
}
public class ArgumentTypeNotIntegerException : InvalidArgumentTypeException
{
    public ArgumentTypeNotIntegerException(string message) : base(message) {}
}
public static class Program
{
    private static bool IntegerFunction(dynamic n)
    {
        if (n.GetType() != typeof(Int16) &&
            n.GetType() != typeof(Int32) &&
            n.GetType() != typeof(Int64) &&
            n.GetType() != typeof(UInt16) &&
            n.GetType() != typeof(UInt32) &&
            n.GetType() != typeof(UInt64))
            throw new ArgumentTypeNotIntegerException("argument type is not integer type");
        //code that implements IntegerFunction goes here
    }
    private static void Main()
    {
         Console.WriteLine("{0}",IntegerFunction(0)); //Compiles, no run time error and first line of output buffer is either "True" or "False" depends on the code that implements "Program.IntegerFunction" static method.
         Console.WriteLine("{0}",IntegerFunction("string")); //Also compiles but it is run time error and exception of type "ArgumentTypeNotIntegerException" is thrown here.
         Console.WriteLine("This is the last Console.WriteLine output"); //Never reached and executed due the run time error and the exception thrown on the second line of Program.Main static method.
    }

Por supuesto, esta solución funciona solo en tiempo de ejecución pero nunca en tiempo de compilación.

Si desea una solución que siempre funcione en tiempo de compilación y nunca en tiempo de ejecución, deberá envolver la dinámica con una estructura / clase pública cuyos constructores públicos sobrecargados solo acepten argumentos de los tipos deseados y proporcionen el nombre apropiado de struct / class.

Tiene sentido que la dinámica envuelta sea siempre miembro privado de la clase / estructura y que sea el único miembro de la estructura / clase y el nombre del único miembro de la estructura / clase sea "valor".

También deberá definir e implementar métodos públicos y / u operadores que funcionen con los tipos deseados para el miembro dinámico privado de la clase / estructura si es necesario.

También tiene sentido que la estructura / clase tenga un constructor especial / único que acepte un argumento dinámico que inicializa su único miembro dinámico privado llamado "valor", pero el modificador de este constructor es privado, por supuesto.

Una vez que la clase / estructura está lista, defina el tipo de IntegerFunction del argumento para que sea la clase / estructura que se ha definido.

Un ejemplo de código largo que implementa la idea es algo así como:

using System;
public struct Integer
{
    private dynamic value;
    private Integer(dynamic n) { this.value = n; }
    public Integer(Int16 n) { this.value = n; }
    public Integer(Int32 n) { this.value = n; }
    public Integer(Int64 n) { this.value = n; }
    public Integer(UInt16 n) { this.value = n; }
    public Integer(UInt32 n) { this.value = n; }
    public Integer(UInt64 n) { this.value = n; }
    public Integer(Integer n) { this.value = n.value; }
    public static implicit operator Int16(Integer n) { return n.value; }
    public static implicit operator Int32(Integer n) { return n.value; }
    public static implicit operator Int64(Integer n) { return n.value; }
    public static implicit operator UInt16(Integer n) { return n.value; }
    public static implicit operator UInt32(Integer n) { return n.value; }
    public static implicit operator UInt64(Integer n) { return n.value; }
    public static Integer operator +(Integer x, Int16 y) { return new Integer(x.value + y); }
    public static Integer operator +(Integer x, Int32 y) { return new Integer(x.value + y); }
    public static Integer operator +(Integer x, Int64 y) { return new Integer(x.value + y); }
    public static Integer operator +(Integer x, UInt16 y) { return new Integer(x.value + y); }
    public static Integer operator +(Integer x, UInt32 y) { return new Integer(x.value + y); }
    public static Integer operator +(Integer x, UInt64 y) { return new Integer(x.value + y); }
    public static Integer operator -(Integer x, Int16 y) { return new Integer(x.value - y); }
    public static Integer operator -(Integer x, Int32 y) { return new Integer(x.value - y); }
    public static Integer operator -(Integer x, Int64 y) { return new Integer(x.value - y); }
    public static Integer operator -(Integer x, UInt16 y) { return new Integer(x.value - y); }
    public static Integer operator -(Integer x, UInt32 y) { return new Integer(x.value - y); }
    public static Integer operator -(Integer x, UInt64 y) { return new Integer(x.value - y); }
    public static Integer operator *(Integer x, Int16 y) { return new Integer(x.value * y); }
    public static Integer operator *(Integer x, Int32 y) { return new Integer(x.value * y); }
    public static Integer operator *(Integer x, Int64 y) { return new Integer(x.value * y); }
    public static Integer operator *(Integer x, UInt16 y) { return new Integer(x.value * y); }
    public static Integer operator *(Integer x, UInt32 y) { return new Integer(x.value * y); }
    public static Integer operator *(Integer x, UInt64 y) { return new Integer(x.value * y); }
    public static Integer operator /(Integer x, Int16 y) { return new Integer(x.value / y); }
    public static Integer operator /(Integer x, Int32 y) { return new Integer(x.value / y); }
    public static Integer operator /(Integer x, Int64 y) { return new Integer(x.value / y); }
    public static Integer operator /(Integer x, UInt16 y) { return new Integer(x.value / y); }
    public static Integer operator /(Integer x, UInt32 y) { return new Integer(x.value / y); }
    public static Integer operator /(Integer x, UInt64 y) { return new Integer(x.value / y); }
    public static Integer operator %(Integer x, Int16 y) { return new Integer(x.value % y); }
    public static Integer operator %(Integer x, Int32 y) { return new Integer(x.value % y); }
    public static Integer operator %(Integer x, Int64 y) { return new Integer(x.value % y); }
    public static Integer operator %(Integer x, UInt16 y) { return new Integer(x.value % y); }
    public static Integer operator %(Integer x, UInt32 y) { return new Integer(x.value % y); }
    public static Integer operator %(Integer x, UInt64 y) { return new Integer(x.value % y); }
    public static Integer operator +(Integer x, Integer y) { return new Integer(x.value + y.value); }
    public static Integer operator -(Integer x, Integer y) { return new Integer(x.value - y.value); }
    public static Integer operator *(Integer x, Integer y) { return new Integer(x.value * y.value); }
    public static Integer operator /(Integer x, Integer y) { return new Integer(x.value / y.value); }
    public static Integer operator %(Integer x, Integer y) { return new Integer(x.value % y.value); }
    public static bool operator ==(Integer x, Int16 y) { return x.value == y; }
    public static bool operator !=(Integer x, Int16 y) { return x.value != y; }
    public static bool operator ==(Integer x, Int32 y) { return x.value == y; }
    public static bool operator !=(Integer x, Int32 y) { return x.value != y; }
    public static bool operator ==(Integer x, Int64 y) { return x.value == y; }
    public static bool operator !=(Integer x, Int64 y) { return x.value != y; }
    public static bool operator ==(Integer x, UInt16 y) { return x.value == y; }
    public static bool operator !=(Integer x, UInt16 y) { return x.value != y; }
    public static bool operator ==(Integer x, UInt32 y) { return x.value == y; }
    public static bool operator !=(Integer x, UInt32 y) { return x.value != y; }
    public static bool operator ==(Integer x, UInt64 y) { return x.value == y; }
    public static bool operator !=(Integer x, UInt64 y) { return x.value != y; }
    public static bool operator ==(Integer x, Integer y) { return x.value == y.value; }
    public static bool operator !=(Integer x, Integer y) { return x.value != y.value; }
    public override bool Equals(object obj) { return this == (Integer)obj; }
    public override int GetHashCode() { return this.value.GetHashCode(); }
    public override string ToString() { return this.value.ToString(); }
    public static bool operator >(Integer x, Int16 y) { return x.value > y; }
    public static bool operator <(Integer x, Int16 y) { return x.value < y; }
    public static bool operator >(Integer x, Int32 y) { return x.value > y; }
    public static bool operator <(Integer x, Int32 y) { return x.value < y; }
    public static bool operator >(Integer x, Int64 y) { return x.value > y; }
    public static bool operator <(Integer x, Int64 y) { return x.value < y; }
    public static bool operator >(Integer x, UInt16 y) { return x.value > y; }
    public static bool operator <(Integer x, UInt16 y) { return x.value < y; }
    public static bool operator >(Integer x, UInt32 y) { return x.value > y; }
    public static bool operator <(Integer x, UInt32 y) { return x.value < y; }
    public static bool operator >(Integer x, UInt64 y) { return x.value > y; }
    public static bool operator <(Integer x, UInt64 y) { return x.value < y; }
    public static bool operator >(Integer x, Integer y) { return x.value > y.value; }
    public static bool operator <(Integer x, Integer y) { return x.value < y.value; }
    public static bool operator >=(Integer x, Int16 y) { return x.value >= y; }
    public static bool operator <=(Integer x, Int16 y) { return x.value <= y; }
    public static bool operator >=(Integer x, Int32 y) { return x.value >= y; }
    public static bool operator <=(Integer x, Int32 y) { return x.value <= y; }
    public static bool operator >=(Integer x, Int64 y) { return x.value >= y; }
    public static bool operator <=(Integer x, Int64 y) { return x.value <= y; }
    public static bool operator >=(Integer x, UInt16 y) { return x.value >= y; }
    public static bool operator <=(Integer x, UInt16 y) { return x.value <= y; }
    public static bool operator >=(Integer x, UInt32 y) { return x.value >= y; }
    public static bool operator <=(Integer x, UInt32 y) { return x.value <= y; }
    public static bool operator >=(Integer x, UInt64 y) { return x.value >= y; }
    public static bool operator <=(Integer x, UInt64 y) { return x.value <= y; }
    public static bool operator >=(Integer x, Integer y) { return x.value >= y.value; }
    public static bool operator <=(Integer x, Integer y) { return x.value <= y.value; }
    public static Integer operator +(Int16 x, Integer y) { return new Integer(x + y.value); }
    public static Integer operator +(Int32 x, Integer y) { return new Integer(x + y.value); }
    public static Integer operator +(Int64 x, Integer y) { return new Integer(x + y.value); }
    public static Integer operator +(UInt16 x, Integer y) { return new Integer(x + y.value); }
    public static Integer operator +(UInt32 x, Integer y) { return new Integer(x + y.value); }
    public static Integer operator +(UInt64 x, Integer y) { return new Integer(x + y.value); }
    public static Integer operator -(Int16 x, Integer y) { return new Integer(x - y.value); }
    public static Integer operator -(Int32 x, Integer y) { return new Integer(x - y.value); }
    public static Integer operator -(Int64 x, Integer y) { return new Integer(x - y.value); }
    public static Integer operator -(UInt16 x, Integer y) { return new Integer(x - y.value); }
    public static Integer operator -(UInt32 x, Integer y) { return new Integer(x - y.value); }
    public static Integer operator -(UInt64 x, Integer y) { return new Integer(x - y.value); }
    public static Integer operator *(Int16 x, Integer y) { return new Integer(x * y.value); }
    public static Integer operator *(Int32 x, Integer y) { return new Integer(x * y.value); }
    public static Integer operator *(Int64 x, Integer y) { return new Integer(x * y.value); }
    public static Integer operator *(UInt16 x, Integer y) { return new Integer(x * y.value); }
    public static Integer operator *(UInt32 x, Integer y) { return new Integer(x * y.value); }
    public static Integer operator *(UInt64 x, Integer y) { return new Integer(x * y.value); }
    public static Integer operator /(Int16 x, Integer y) { return new Integer(x / y.value); }
    public static Integer operator /(Int32 x, Integer y) { return new Integer(x / y.value); }
    public static Integer operator /(Int64 x, Integer y) { return new Integer(x / y.value); }
    public static Integer operator /(UInt16 x, Integer y) { return new Integer(x / y.value); }
    public static Integer operator /(UInt32 x, Integer y) { return new Integer(x / y.value); }
    public static Integer operator /(UInt64 x, Integer y) { return new Integer(x / y.value); }
    public static Integer operator %(Int16 x, Integer y) { return new Integer(x % y.value); }
    public static Integer operator %(Int32 x, Integer y) { return new Integer(x % y.value); }
    public static Integer operator %(Int64 x, Integer y) { return new Integer(x % y.value); }
    public static Integer operator %(UInt16 x, Integer y) { return new Integer(x % y.value); }
    public static Integer operator %(UInt32 x, Integer y) { return new Integer(x % y.value); }
    public static Integer operator %(UInt64 x, Integer y) { return new Integer(x % y.value); }
    public static bool operator ==(Int16 x, Integer y) { return x == y.value; }
    public static bool operator !=(Int16 x, Integer y) { return x != y.value; }
    public static bool operator ==(Int32 x, Integer y) { return x == y.value; }
    public static bool operator !=(Int32 x, Integer y) { return x != y.value; }
    public static bool operator ==(Int64 x, Integer y) { return x == y.value; }
    public static bool operator !=(Int64 x, Integer y) { return x != y.value; }
    public static bool operator ==(UInt16 x, Integer y) { return x == y.value; }
    public static bool operator !=(UInt16 x, Integer y) { return x != y.value; }
    public static bool operator ==(UInt32 x, Integer y) { return x == y.value; }
    public static bool operator !=(UInt32 x, Integer y) { return x != y.value; }
    public static bool operator ==(UInt64 x, Integer y) { return x == y.value; }
    public static bool operator !=(UInt64 x, Integer y) { return x != y.value; }
    public static bool operator >(Int16 x, Integer y) { return x > y.value; }
    public static bool operator <(Int16 x, Integer y) { return x < y.value; }
    public static bool operator >(Int32 x, Integer y) { return x > y.value; }
    public static bool operator <(Int32 x, Integer y) { return x < y.value; }
    public static bool operator >(Int64 x, Integer y) { return x > y.value; }
    public static bool operator <(Int64 x, Integer y) { return x < y.value; }
    public static bool operator >(UInt16 x, Integer y) { return x > y.value; }
    public static bool operator <(UInt16 x, Integer y) { return x < y.value; }
    public static bool operator >(UInt32 x, Integer y) { return x > y.value; }
    public static bool operator <(UInt32 x, Integer y) { return x < y.value; }
    public static bool operator >(UInt64 x, Integer y) { return x > y.value; }
    public static bool operator <(UInt64 x, Integer y) { return x < y.value; }
    public static bool operator >=(Int16 x, Integer y) { return x >= y.value; }
    public static bool operator <=(Int16 x, Integer y) { return x <= y.value; }
    public static bool operator >=(Int32 x, Integer y) { return x >= y.value; }
    public static bool operator <=(Int32 x, Integer y) { return x <= y.value; }
    public static bool operator >=(Int64 x, Integer y) { return x >= y.value; }
    public static bool operator <=(Int64 x, Integer y) { return x <= y.value; }
    public static bool operator >=(UInt16 x, Integer y) { return x >= y.value; }
    public static bool operator <=(UInt16 x, Integer y) { return x <= y.value; }
    public static bool operator >=(UInt32 x, Integer y) { return x >= y.value; }
    public static bool operator <=(UInt32 x, Integer y) { return x <= y.value; }
    public static bool operator >=(UInt64 x, Integer y) { return x >= y.value; }
    public static bool operator <=(UInt64 x, Integer y) { return x <= y.value; }
}
public static class Program
{
    private static bool IntegerFunction(Integer n)
    {
        //code that implements IntegerFunction goes here
        //note that there is NO code that checks the type of n in rum time, because it is NOT needed anymore 
    }
    private static void Main()
    {
        Console.WriteLine("{0}",IntegerFunction(0)); //compile error: there is no overloaded METHOD for objects of type "int" and no implicit conversion from any object, including "int", to "Integer" is known.
        Console.WriteLine("{0}",IntegerFunction(new Integer(0))); //both compiles and no run time error
        Console.WriteLine("{0}",IntegerFunction("string")); //compile error: there is no overloaded METHOD for objects of type "string" and no implicit conversion from any object, including "string", to "Integer" is known.
        Console.WriteLine("{0}",IntegerFunction(new Integer("string"))); //compile error: there is no overloaded CONSTRUCTOR for objects of type "string"
    }
}

Note that in order to use dynamic in your code you must Add Reference to Microsoft.CSharp

If the version of the .NET framework is below/under/lesser than 4.0 and dynamic is undefined in that version then you will have to use object instead and do casting to the integer type, which is trouble, so I recommend that you use at least .NET 4.0 or newer if you can so you can use dynamic instead of object .




No hay forma de restringir las plantillas a los tipos, pero puede definir diferentes acciones según el tipo. Como parte de un paquete numérico genérico, necesitaba una clase genérica para agregar dos valores.

    class Something<TCell>
    {
        internal static TCell Sum(TCell first, TCell second)
        {
            if (typeof(TCell) == typeof(int))
                return (TCell)((object)(((int)((object)first)) + ((int)((object)second))));

            if (typeof(TCell) == typeof(double))
                return (TCell)((object)(((double)((object)first)) + ((double)((object)second))));

            return second;
        }
    }

Tenga en cuenta que los typeofs se evalúan en tiempo de compilación, por lo que el compilador eliminará las declaraciones if. El compilador también elimina moldes espurios. Entonces algo se resolvería en el compilador

        internal static int Sum(int first, int second)
        {
            return first + second;
        }



Yo usaría uno genérico que podría manejar externamente ...

/// <summary>
/// Generic object copy of the same type
/// </summary>
/// <typeparam name="T">The type of object to copy</typeparam>
/// <param name="ObjectSource">The source object to copy</param>
public T CopyObject<T>(T ObjectSource)
{
    T NewObject = System.Activator.CreateInstance<T>();

    foreach (PropertyInfo p in ObjectSource.GetType().GetProperties())
        NewObject.GetType().GetProperty(p.Name).SetValue(NewObject, p.GetValue(ObjectSource, null), null);

    return NewObject;
}



Me preguntaba lo mismo que samjudson, ¿por qué solo enteros? y si ese es el caso, es posible que desee crear una clase auxiliar o algo así para mantener todos los tipos que desee.

Si todo lo que quieres son enteros, no uses un genérico, que no sea genérico; o mejor aún, rechace cualquier otro tipo verificando su tipo.




Related