[C#] 文字列/整数のすべての置換をリストする



Answers

LINQを使用することができれば、コードは2行だけです。 私の答えはhereご覧ください。

EDIT

ここでは、Tのリストからすべての順列(組み合わせではない)を返すことができる私の一般的な関数です:

static IEnumerable<IEnumerable<T>>
    GetPermutations<T>(IEnumerable<T> list, int length)
{
    if (length == 1) return list.Select(t => new T[] { t });

    return GetPermutations(list, length - 1)
        .SelectMany(t => list.Where(e => !t.Contains(e)),
            (t1, t2) => t1.Concat(new T[] { t2 }));
}

例:

IEnumerable<IEnumerable<int>> result =
    GetPermutations(Enumerable.Range(1, 3), 3);

出力 - 整数リストのリスト:

{1,2,3} {1,3,2} {2,1,3} {2,3,1} {3,1,2} {3,2,1}

この関数はLINQを使用するので、.net 3.5以上が必要です。

Question

インタビューのプログラミングでの共通の課題(私のインタビューの経験からではありません)は、文字列または整数をとり、すべての可能な順列をリストすることです。

このような問題を解決する背後にある論理とその仕組みの例はありますか?

私はいくつかのコードスニペットを見てきましたが、それらはよくコメントされていない/説明されており、従って追いつくのは難しいです。




ここに純粋に機能的なF#実装があります:


let factorial i =
    let rec fact n x =
        match n with
        | 0 -> 1
        | 1 -> x
        | _ -> fact (n-1) (x*n)
    fact i 1

let swap (arr:'a array) i j = [| for k in 0..(arr.Length-1) -> if k = i then arr.[j] elif k = j then arr.[i] else arr.[k] |]

let rec permutation (k:int,j:int) (r:'a array) =
    if j = (r.Length + 1) then r
    else permutation (k/j+1, j+1) (swap r (j-1) (k%j))

let permutations (source:'a array) = seq { for k = 0 to (source |> Array.length |> factorial) - 1 do yield permutation (k,2) source }

CLR配列の変更可能な性質を利用するためにスワップを変更することでパフォーマンスを大幅に向上させることができますが、この実装はソース配列に関してスレッドセーフであり、状況によっては望ましいことがあります。 また、16以上の要素を持つ配列の場合、intは、factorial 17がint32のオーバーフローを引き起こすため、より大きい/任意の精度の型に置き換える必要があります。




これはわたしが理解しやすい解決策です

class ClassicPermutationProblem
{
    ClassicPermutationProblem() { }

    private static void PopulatePosition<T>(List<List<T>> finalList, List<T> list, List<T> temp, int position)
    {
         foreach (T element in list)
         {
             List<T> currentTemp = temp.ToList();
             if (!currentTemp.Contains(element))
                currentTemp.Add(element);
             else
                continue;

             if (position == list.Count)
                finalList.Add(currentTemp);
             else
                PopulatePosition(finalList, list, currentTemp, position + 1);
        }
    }

    public static List<List<int>> GetPermutations(List<int> list)
    {
        List<List<int>> results = new List<List<int>>();
        PopulatePosition(results, list, new List<int>(), 1);
        return results;
     }
}

static void Main(string[] args)
{
    List<List<int>> results = ClassicPermutationProblem.GetPermutations(new List<int>() { 1, 2, 3 });
}



すべての順列を再帰的に出力する関数があります。

public void Permutations(string input, StringBuilder sb)
    {
        if (sb.Length == input.Length)
        {
            Console.WriteLine(sb.ToString());
            return;
        }

        char[] inChar = input.ToCharArray();

        for (int i = 0; i < input.Length; i++)
        {
            if (!sb.ToString().Contains(inChar[i]))
            {
                sb.Append(inChar[i]);
                Permutations(input, sb);    
                RemoveChar(sb, inChar[i]);
            }
        }
    }

private bool RemoveChar(StringBuilder input, char toRemove)
    {
        int index = input.ToString().IndexOf(toRemove);
        if (index >= 0)
        {
            input.Remove(index, 1);
            return true;
        }
        return false;
    }



再帰は必要ではありませんが、 hereはこのソリューションに関する良い情報があります。

var values1 = new[] { 1, 2, 3, 4, 5 };

foreach (var permutation in values1.GetPermutations())
{
    Console.WriteLine(string.Join(", ", permutation));
}

var values2 = new[] { 'a', 'b', 'c', 'd', 'e' };

foreach (var permutation in values2.GetPermutations())
{
    Console.WriteLine(string.Join(", ", permutation));
}

Console.ReadLine();

私はこのアルゴリズムを長年使用してきましたが、各順列を計算するためにO(N) 時間空間の複雑さがあります。

public static class SomeExtensions
{
    public static IEnumerable<IEnumerable<T>> GetPermutations<T>(this IEnumerable<T> enumerable)
    {
        var array = enumerable as T[] ?? enumerable.ToArray();

        var factorials = Enumerable.Range(0, array.Length + 1)
            .Select(Factorial)
            .ToArray();

        for (var i = 0L; i < factorials[array.Length]; i++)
        {
            var sequence = GenerateSequence(i, array.Length - 1, factorials);

            yield return GeneratePermutation(array, sequence);
        }
    }

    private static IEnumerable<T> GeneratePermutation<T>(T[] array, IReadOnlyList<int> sequence)
    {
        var clone = (T[]) array.Clone();

        for (int i = 0; i < clone.Length - 1; i++)
        {
            Swap(ref clone[i], ref clone[i + sequence[i]]);
        }

        return clone;
    }

    private static int[] GenerateSequence(long number, int size, IReadOnlyList<long> factorials)
    {
        var sequence = new int[size];

        for (var j = 0; j < sequence.Length; j++)
        {
            var facto = factorials[sequence.Length - j];

            sequence[j] = (int)(number / facto);
            number = (int)(number % facto);
        }

        return sequence;
    }

    static void Swap<T>(ref T a, ref T b)
    {
        T temp = a;
        a = b;
        b = temp;
    }

    private static long Factorial(int n)
    {
        long result = n;

        for (int i = 1; i < n; i++)
        {
            result = result * i;
        }

        return result;
    }
}



    //Generic C# Method
            private static List<T[]> GetPerms<T>(T[] input, int startIndex = 0)
            {
                var perms = new List<T[]>();

                var l = input.Length - 1;

                if (l == startIndex)
                    perms.Add(input);
                else
                {

                    for (int i = startIndex; i <= l; i++)
                    {
                        var copy = input.ToArray(); //make copy

                        var temp = copy[startIndex];

                        copy[startIndex] = copy[i];
                        copy[i] = temp;

                        perms.AddRange(GetPerms(copy, startIndex + 1));

                    }
                }

                return perms;
            }

            //usages
            char[] charArray = new char[] { 'A', 'B', 'C' };
            var charPerms = GetPerms(charArray);


            string[] stringArray = new string[] { "Orange", "Mango", "Apple" };
            var stringPerms = GetPerms(stringArray);


            int[] intArray = new int[] { 1, 2, 3 };
            var intPerms = GetPerms(intArray);



まず第一に、セットには文字列や整数ではなく順列があるので、文字列内の文字セットを意味すると見なします。

サイズnの集合にはnがあることに注意してください。 n-permutations。

次の擬似コード(Wikipediaから):k = 1 ... n! すべての順列を与える:

function permutation(k, s) {
    for j = 2 to length(s) {
        swap s[(k mod j) + 1] with s[j]; // note that our array is indexed starting at 1
        k := k / j; // integer division cuts off the remainder
    }
    return s;
}

これに相当するPythonコード(0ベースの配列インデックスの場合)は次のとおりです。

def permutation(k, s):
    r = s[:]
    for j in range(2, len(s)+1):
        r[j-1], r[k%j] = r[k%j], r[j-1]
        k = k/j+1
    return r



パフォーマンスとメモリが問題になる場合は、この非常に効率的な実装をお勧めします。 WikipediaのHeapのアルゴリズムによれば、それは最も速くなければならない。 あなたの必要性に合うことを願っています:-)!

ちょうど10のためのLinqの実装との比較として! (コードを含む):

  • これは235ミリ秒で36288000アイテム
  • Linq:50051ミリ秒で36288000個のアイテム

    using System;
    using System.Collections.Generic;
    using System.Diagnostics;
    using System.Linq;
    using System.Runtime.CompilerServices;
    using System.Text;
    
    namespace WpfPermutations
    {
        /// <summary>
        /// EO: 2016-04-14
        /// Generator of all permutations of an array of anything.
        /// Base on Heap's Algorithm. See: https://en.wikipedia.org/wiki/Heap%27s_algorithm#cite_note-3
        /// </summary>
        public static class Permutations
        {
            /// <summary>
            /// Heap's algorithm to find all pmermutations. Non recursive, more efficient.
            /// </summary>
            /// <param name="items">Items to permute in each possible ways</param>
            /// <param name="funcExecuteAndTellIfShouldStop"></param>
            /// <returns>Return true if cancelled</returns> 
            public static bool ForAllPermutation<T>(T[] items, Func<T[], bool> funcExecuteAndTellIfShouldStop)
            {
                int countOfItem = items.Length;
    
                if (countOfItem <= 1)
                {
                    return funcExecuteAndTellIfShouldStop(items);
                }
    
                var indexes = new int[countOfItem];
                for (int i = 0; i < countOfItem; i++)
                {
                    indexes[i] = 0;
                }
    
                if (funcExecuteAndTellIfShouldStop(items))
                {
                    return true;
                }
    
                for (int i = 1; i < countOfItem;)
                {
                    if (indexes[i] < i)
                    { // On the web there is an implementation with a multiplication which should be less efficient.
                        if ((i & 1) == 1) // if (i % 2 == 1)  ... more efficient ??? At least the same.
                        {
                            Swap(ref items[i], ref items[indexes[i]]);
                        }
                        else
                        {
                            Swap(ref items[i], ref items[0]);
                        }
    
                        if (funcExecuteAndTellIfShouldStop(items))
                        {
                            return true;
                        }
    
                        indexes[i]++;
                        i = 1;
                    }
                    else
                    {
                        indexes[i++] = 0;
                    }
                }
    
                return false;
            }
    
            /// <summary>
            /// This function is to show a linq way but is far less efficient
            /// </summary>
            /// <typeparam name="T"></typeparam>
            /// <param name="list"></param>
            /// <param name="length"></param>
            /// <returns></returns>
            static IEnumerable<IEnumerable<T>> GetPermutations<T>(IEnumerable<T> list, int length)
            {
                if (length == 1) return list.Select(t => new T[] { t });
    
                return GetPermutations(list, length - 1)
                    .SelectMany(t => list.Where(e => !t.Contains(e)),
                        (t1, t2) => t1.Concat(new T[] { t2 }));
            }
    
            /// <summary>
            /// Swap 2 elements of same type
            /// </summary>
            /// <typeparam name="T"></typeparam>
            /// <param name="a"></param>
            /// <param name="b"></param>
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            static void Swap<T>(ref T a, ref T b)
            {
                T temp = a;
                a = b;
                b = temp;
            }
    
            /// <summary>
            /// Func to show how to call. It does a little test for an array of 4 items.
            /// </summary>
            public static void Test()
            {
                ForAllPermutation("123".ToCharArray(), (vals) =>
                {
                    Debug.Print(String.Join("", vals));
                    return false;
                });
    
                int[] values = new int[] { 0, 1, 2, 4 };
    
                Debug.Print("Non Linq");
                ForAllPermutation(values, (vals) =>
                {
                    Debug.Print(String.Join("", vals));
                    return false;
                });
    
                Debug.Print("Linq");
                foreach(var v in GetPermutations(values, values.Length))
                {
                    Debug.Print(String.Join("", v));
                }
    
                // Performance
                int count = 0;
    
                values = new int[10];
                for(int n = 0; n < values.Length; n++)
                {
                    values[n] = n;
                }
    
                Stopwatch stopWatch = new Stopwatch();
                stopWatch.Reset();
                stopWatch.Start();
    
                ForAllPermutation(values, (vals) =>
                {
                    foreach(var v in vals)
                    {
                        count++;
                    }
                    return false;
                });
    
                stopWatch.Stop();
                Debug.Print($"Non Linq {count} items in {stopWatch.ElapsedMilliseconds} millisecs");
    
                count = 0;
                stopWatch.Reset();
                stopWatch.Start();
    
                foreach (var vals in GetPermutations(values, values.Length))
                {
                    foreach (var v in vals)
                    {
                        count++;
                    }
                }
    
                stopWatch.Stop();
                Debug.Print($"Linq {count} items in {stopWatch.ElapsedMilliseconds} millisecs");
    
            }
        }
    }
    



以下は私の順列の実装です。 変数名は気にしないでください。

class combinations
{
    static void Main()
    {

        string choice = "y";
        do
        {
            try
            {
                Console.WriteLine("Enter word :");
                string abc = Console.ReadLine().ToString();
                Console.WriteLine("Combinatins for word :");
                List<string> final = comb(abc);
                int count = 1;
                foreach (string s in final)
                {
                    Console.WriteLine("{0} --> {1}", count++, s);
                }
                Console.WriteLine("Do you wish to continue(y/n)?");
                choice = Console.ReadLine().ToString();
            }
            catch (Exception exc)
            {
                Console.WriteLine(exc);
            }
        } while (choice == "y" || choice == "Y");
    }

    static string swap(string test)
    {
        return swap(0, 1, test);
    }

    static List<string> comb(string test)
    {
        List<string> sec = new List<string>();
        List<string> first = new List<string>();
        if (test.Length == 1) first.Add(test);
        else if (test.Length == 2) { first.Add(test); first.Add(swap(test)); }
        else if (test.Length > 2)
        {
            sec = generateWords(test);
            foreach (string s in sec)
            {
                string init = s.Substring(0, 1);
                string restOfbody = s.Substring(1, s.Length - 1);

                List<string> third = comb(restOfbody);
                foreach (string s1 in third)
                {
                    if (!first.Contains(init + s1)) first.Add(init + s1);
                }


            }
        }

        return first;
    }

    static string ShiftBack(string abc)
    {
        char[] arr = abc.ToCharArray();
        char temp = arr[0];
        string wrd = string.Empty;
        for (int i = 1; i < arr.Length; i++)
        {
            wrd += arr[i];
        }

        wrd += temp;
        return wrd;
    }

    static List<string> generateWords(string test)
    {
        List<string> final = new List<string>();
        if (test.Length == 1)
            final.Add(test);
        else
        {
            final.Add(test);
            string holdString = test;
            while (final.Count < test.Length)
            {
                holdString = ShiftBack(holdString);
                final.Add(holdString);
            }
        }

        return final;
    }

    static string swap(int currentPosition, int targetPosition, string temp)
    {
        char[] arr = temp.ToCharArray();
        char t = arr[currentPosition];
        arr[currentPosition] = arr[targetPosition];
        arr[targetPosition] = t;
        string word = string.Empty;
        for (int i = 0; i < arr.Length; i++)
        {
            word += arr[i];

        }

        return word;

    }
}



class Permutation
{
    public static List<string> Permutate(string seed, List<string> lstsList)
    {
        loopCounter = 0;
        // string s="\w{0,2}";
        var lstStrs = PermuateRecursive(seed);

        Trace.WriteLine("Loop counter :" + loopCounter);
        return lstStrs;
    }

    // Recursive function to find permutation
    private static List<string> PermuateRecursive(string seed)
    {
        List<string> lstStrs = new List<string>();

        if (seed.Length > 2)
        {
            for (int i = 0; i < seed.Length; i++)
            {
                str = Swap(seed, 0, i);

                PermuateRecursive(str.Substring(1, str.Length - 1)).ForEach(
                    s =>
                    {
                        lstStrs.Add(str[0] + s);
                        loopCounter++;
                    });
                ;
            }
        }
        else
        {
            lstStrs.Add(seed);
            lstStrs.Add(Swap(seed, 0, 1));
        }
        return lstStrs;
    }
    //Loop counter variable to count total number of loop execution in various functions
    private static int loopCounter = 0;

    //Non recursive  version of permuation function
    public static List<string> Permutate(string seed)
    {
        loopCounter = 0;
        List<string> strList = new List<string>();
        strList.Add(seed);
        for (int i = 0; i < seed.Length; i++)
        {
            int count = strList.Count;
            for (int j = i + 1; j < seed.Length; j++)
            {
                for (int k = 0; k < count; k++)
                {
                    strList.Add(Swap(strList[k], i, j));
                    loopCounter++;
                }
            }
        }
        Trace.WriteLine("Loop counter :" + loopCounter);
        return strList;
    }

    private static string Swap(string seed, int p, int p2)
    {
        Char[] chars = seed.ToCharArray();
        char temp = chars[p2];
        chars[p2] = chars[p];
        chars[p] = temp;
        return new string(chars);
    }
}



ここでは、C#の単純な解法を使用して再帰を使用して、

void Main()
{
    string word = "abc";
    WordPermuatation("",word);
}

void WordPermuatation(string prefix, string word)
{
    int n = word.Length;
    if (n == 0) { Console.WriteLine(prefix); }
    else
    {
        for (int i = 0; i < n; i++)
        {
            WordPermuatation(prefix + word[i],word.Substring(0, i) + word.Substring(i + 1, n - (i+1)));
        }
    }
}



ここでは私が考えることができる最も簡単なソリューションです:

let rec distribute e = function
  | [] -> [[e]]
  | x::xs' as xs -> (e::xs)::[for xs in distribute e xs' -> x::xs]

let permute xs = Seq.fold (fun ps x -> List.collect (distribute x) ps) [[]] xs

distribute関数は、新しい要素en要素リストを取り、それぞれが別の場所に挿入されたn+1リストのリストを返します。 たとえば、リスト[1;2;3]の4つの可能な場所のそれぞれに10を挿入し[1;2;3]

> distribute 10 [1..3];;
val it : int list list =
  [[10; 1; 2; 3]; [1; 10; 2; 3]; [1; 2; 10; 3]; [1; 2; 3; 10]]

permute関数は各要素を折り畳み、順番にこれまでに蓄積された順列を分布させ、すべての順列に達する。 例えば、リスト[1;2;3]の6つの順列:

> permute [1;2;3];;
val it : int list list =
  [[3; 2; 1]; [2; 3; 1]; [2; 1; 3]; [3; 1; 2]; [1; 3; 2]; [1; 2; 3]]

中間のアキュムレータを保持するためにscanfoldを変更すると、順列が一度に1つの要素でどのように生成されるかが明らかになります。

> Seq.scan (fun ps x -> List.collect (distribute x) ps) [[]] [1..3];;
val it : seq<int list list> =
  seq
    [[[]]; [[1]]; [[2; 1]; [1; 2]];
     [[3; 2; 1]; [2; 3; 1]; [2; 1; 3]; [3; 1; 2]; [1; 3; 2]; [1; 2; 3]]]



私は簡単なので、 FBryant87のアプローチが好きだった。 残念ながら、多くの他の "解"はすべての順列を提供していないか、同じ数字を複数回含む場合は整数を返します。 656123を例に取る。 この線:

var tail = chars.Except(new List<char>(){c});

Exceptを使用するとすべての出現が削除されます。つまり、c = 6の場合、2桁の数字が削除され、たとえば5123が残されます。これを解決したソリューションは1つもないので、 FBryant87のベースとしてのコード これは私が思いついたものです:

private static List<string> FindPermutations(string set)
    {
        var output = new List<string>();
        if (set.Length == 1)
        {
            output.Add(set);
        }
        else
        {
            foreach (var c in set)
            {
                // Remove one occurrence of the char (not all)
                var tail = set.Remove(set.IndexOf(c), 1);
                foreach (var tailPerms in FindPermutations(tail))
                {
                    output.Add(c + tailPerms);
                }
            }
        }
        return output;
    }

私は単に、.Removeと.IndexOfを使って最初に見つかったオカレンスを削除します。 少なくとも私の使い方を意図したものとして動作するようです。 私はそれがもっときれいになるかもしれないと確信しています。

ただし、結果リストには重複が含まれている可能性があるので、代わりにメソッドをHashSetに戻すか、戻り値の後に重複を削除してください。




Links