[c++] Каковы различия между переменной указателя и ссылочной переменной в C ++?



Answers

Что такое C ++-ссылка ( для программистов C )

Ссылка может рассматриваться как постоянный указатель (не путать с указателем на постоянное значение!) С автоматической косвенностью, т. Е. Компилятор будет применять оператор * для вас.

Все ссылки должны быть инициализированы с ненулевым значением, иначе компиляция завершится с ошибкой. Невозможно получить адрес ссылки - вместо этого адресный оператор вернет адрес ссылочного значения - и это невозможно сделать арифметикой по ссылкам.

Программистам C могут не нравиться ссылки на C ++, поскольку они больше не будут очевидны при возникновении косвенности или если аргумент передается по значению или указателем, не глядя на сигнатуры функций.

Программистам на C ++ может не нравиться использование указателей, поскольку они считаются небезопасными, хотя ссылки на самом деле не являются более безопасными, чем постоянные указатели, за исключением самых тривиальных случаев - отсутствие удобства автоматической косвенности и перенос другой смысловой коннотации.

Рассмотрим следующий пример из C ++ FAQ :

Несмотря на то, что ссылка часто реализуется с использованием адреса на базовом языке ассемблера, пожалуйста, не думайте о ссылке в качестве смешного указателя на объект. Ссылка - это объект. Это не указатель на объект, а также копия объекта. Это объект.

Но если ссылка действительно была объектом, как могли быть оборванные ссылки? В неуправляемых языках невозможно, чтобы ссылки были «безопаснее», чем указатели, - как правило, это просто не способ надежно присвоить значения через границы границ!

Почему я считаю ссылки на C ++ полезными

Исходя из C-фона, ссылки на C ++ могут выглядеть несколько глупой концепцией, но по возможности следует использовать их вместо указателей: автоматическое косвенное удобство удобно, и ссылки становятся особенно полезными при работе с RAII - но не из-за любой воспринимаемой безопасности но скорее из-за того, что они делают запись идиоматического кода менее неудобным.

RAII является одной из центральных концепций C ++, но он взаимодействует с нетривиальным с копированием семантики. Передача объектов по ссылке позволяет избежать этих проблем, поскольку не выполняется копирование. Если ссылки не присутствовали на этом языке, вам придется использовать указатели вместо этого, которые являются более громоздкими для использования, что нарушает принцип дизайна языка, что решение лучшей практики должно быть проще, чем альтернативы.

Question

Я знаю, что ссылки - это синтаксический сахар, поэтому код легче читать и писать.

Но каковы различия?

Резюме из ответов и ссылок ниже:

  1. Указатель может быть повторно назначен любым количеством раз, в то время как ссылка не может быть переустановлена ​​после привязки.
  2. Указатели не могут указывать нигде ( NULL ), тогда как ссылка всегда относится к объекту.
  3. Вы не можете использовать адрес ссылки, как вы можете, указателями.
  4. Нет никакой «ссылочной арифметики» (но вы можете взять адрес объекта, на который указывает ссылка, и сделать на нем указательную арифметику, как в &obj + 5 ).

Чтобы прояснить заблуждение:

Стандарт C ++ очень осторожен, чтобы не диктовать, как компилятор должен реализовывать ссылки, но каждый компилятор C ++ реализует ссылки в качестве указателей. То есть, декларация, такая как:

int &ri = i;

если он полностью не оптимизирован , выделяет тот же объем памяти, что и указатель, и помещает адрес i в это хранилище.

Таким образом, указатель и ссылка занимают одинаковый объем памяти.

Как общее правило,

  • Используйте ссылки в параметрах функций и типах возврата для определения полезных и самодокументирующихся интерфейсов.
  • Используйте указатели для реализации алгоритмов и структур данных.

Интересное чтение:




A reference is an alias for another variable whereas a pointer holds the memory address of a variable. References are generally used as function parameters so that the passed object is not the copy but the object itself.

    void fun(int &a, int &b); // A common usage of references.
    int a = 0;
    int &b = a; // b is an alias for a. Not so common to use. 



I feel like there is yet another point that hasn't been covered here.

Unlike the pointers, references are syntactically equivalent to the object they refer to, ie any operation that can be applied to an object works for a reference, and with the exact same syntax (the exception is of course the initialization).

While this may appear superficial, I believe this property is crucial for a number of C++ features, for example:

  • Templates . Since template parameters are duck-typed, syntactic properties of a type is all that matters, so often the same template can be used with both T and T& .
    (or std::reference_wrapper<T> which still relies on an implicit cast to T& )
    Templates that cover both T& and T&& are even more common.

  • Lvalues . Consider the statement str[0] = 'X'; Without references it would only work for c-strings ( char* str ). Returning the character by reference allows user-defined classes to have the same notation.

  • Copy constructors . Syntactically it makes sense to pass objects to copy constructors, and not pointers to objects. But there is just no way for a copy constructor to take an object by value - it would result in a recursive call to the same copy constructor. This leaves references as the only option here.

  • Operator overloads . With references it is possible to introduce indirection to an operator call - say, operator+(const T& a, const T& b) while retaining the same infix notation. This also works for regular overloaded functions.

These points empower a considerable part of C++ and the standard library so this is quite a major property of references.




The difference is that non-constant pointer variable(not to be confused with a pointer to constant) may be changed at some time during program execution, requires pointer semantics to be used(&,*) operators, while references can be set upon initialization only(that's why you can set them in constructor initializer list only, but not somehow else) and use ordinary value accessing semantics. Basically references were introduced to allow support for operators overloading as I had read in some very old book. As somebody stated in this thread - pointer can be set to 0 or whatever value you want. 0(NULL, nullptr) means that the pointer is initialized with nothing. It is an error to dereference null pointer. But actually the pointer may contain a value that doesn't point to some correct memory location. References in their turn try not to allow a user to initialize a reference to something that cannot be referenced due to the fact that you always provide rvalue of correct type to it. Although there are a lot of ways to make reference variable be initialized to a wrong memory location - it is better for you not to dig this deep into details. On machine level both pointer and reference work uniformly - via pointers. Let's say in essential references are syntactic sugar. rvalue references are different to this - they are naturally stack/heap objects.




Помимо синтаксического сахара, ссылка является указателем const ( не указателем на const ). Вы должны установить, на что оно ссылается, когда вы объявляете ссылочную переменную, и вы не можете изменить ее позже.

Обновление: теперь, когда я думаю об этом еще, есть важное различие.

Целью указателя const можно заменить его адрес и использование команды const.

Цель ссылки не может быть заменена каким-либо образом, чем UB.

Это должно позволить компилятору сделать большую оптимизацию по ссылке.




Another interesting use of references is to supply a default argument of a user-defined type:

class UDT
{
public:
   UDT() : val_d(33) {};
   UDT(int val) : val_d(val) {};
   virtual ~UDT() {};
private:
   int val_d;
};

class UDT_Derived : public UDT
{
public:
   UDT_Derived() : UDT() {};
   virtual ~UDT_Derived() {};
};

class Behavior
{
public:
   Behavior(
      const UDT &udt = UDT()
   )  {};
};

int main()
{
   Behavior b; // take default

   UDT u(88);
   Behavior c(u);

   UDT_Derived ud;
   Behavior d(ud);

   return 1;
}

The default flavor uses the 'bind const reference to a temporary' aspect of references.




Another difference is that you can have pointers to a void type (and it means pointer to anything) but references to void are forbidden.

int a;
void * p = &a; // ok
void & p = a;  //  forbidden

I can't say I'm really happy with this particular difference. I would much prefer it would be allowed with the meaning reference to anything with an address and otherwise the same behavior for references. It would allow to define some equivalents of C library functions like memcpy using references.




I have an analogy for references and pointers, think of references as another name for an object and pointers as the address of an object.

// receives an alias of an int, an address of an int and an int value
public void my_function(int& a,int* b,int c){
    int d = 1; // declares an integer named d
    int &e = d; // declares that e is an alias of d
    // using either d or e will yield the same result as d and e name the same object
    int *f = e; // invalid, you are trying to place an object in an address
    // imagine writting your name in an address field 
    int *g = f; // writes an address to an address
    g = &d; // &d means get me the address of the object named d you could also
    // use &e as it is an alias of d and write it on g, which is an address so it's ok
}



Ссылки очень похожи на указатели, но они специально созданы, чтобы помочь оптимизировать компиляторы.

  • Ссылки разработаны таким образом, что компилятор существенно упрощает отслеживание ссылочных псевдонимов, которые являются переменными. Две важные особенности очень важны: нет «ссылочной арифметики» и не переназначения ссылок. Они позволяют компилятору выяснить, какие ссылки содержат псевдониму, какие переменные во время компиляции.
  • Ссылки могут ссылаться на переменные, которые не имеют адресов памяти, например, которые компилятор выбирает для ввода в регистры. Если вы берете адрес локальной переменной, компилятор очень сложно поместить его в регистр.

В качестве примера:

void maybeModify(int& x); // may modify x in some way

void hurtTheCompilersOptimizer(short size, int array[])
{
    // This function is designed to do something particularly troublesome
    // for optimizers. It will constantly call maybeModify on array[0] while
    // adding array[1] to array[2]..array[size-1]. There's no real reason to
    // do this, other than to demonstrate the power of references.
    for (int i = 2; i < (int)size; i++) {
        maybeModify(array[0]);
        array[i] += array[1];
    }
}

Оптимизирующий компилятор может понять, что мы получаем доступ к [0] и [1] довольно связке. Было бы желательно оптимизировать алгоритм, чтобы:

void hurtTheCompilersOptimizer(short size, int array[])
{
    // Do the same thing as above, but instead of accessing array[1]
    // all the time, access it once and store the result in a register,
    // which is much faster to do arithmetic with.
    register int a0 = a[0];
    register int a1 = a[1]; // access a[1] once
    for (int i = 2; i < (int)size; i++) {
        maybeModify(a0); // Give maybeModify a reference to a register
        array[i] += a1;  // Use the saved register value over and over
    }
    a[0] = a0; // Store the modified a[0] back into the array
}

Чтобы сделать такую ​​оптимизацию, необходимо доказать, что во время вызова ничто не может изменить массив [1]. Это довольно легко сделать. i не меньше 2, поэтому array [i] никогда не может ссылаться на массив [1]. maybeModify () присваивается a0 как ссылка (aliasing array [0]). Поскольку нет «ссылочной» арифметики, компилятор просто должен доказать, что возможноModify никогда не получает адрес x, и он доказал, что ничто не изменяет массив [1].

Он также должен доказать, что нет способа, которым будущий вызов мог бы читать / писать [0], в то время как у нас есть временная копия реестра в a0. Это часто тривиально доказывать, потому что во многих случаях очевидно, что эта ссылка никогда не хранится в постоянной структуре, такой как экземпляр класса.

Теперь сделайте то же самое с указателями

void maybeModify(int* x); // May modify x in some way

void hurtTheCompilersOptimizer(short size, int array[])
{
    // Same operation, only now with pointers, making the
    // optimization trickier.
    for (int i = 2; i < (int)size; i++) {
        maybeModify(&(array[0]));
        array[i] += array[1];
    }
}

Поведение такое же; только сейчас гораздо сложнее доказать, что, возможно ,Modify никогда не модифицирует массив [1], потому что мы уже указали ему указатель; кошка вышла из сумки. Теперь он должен сделать гораздо более сложное доказательство: статический анализ mayModify, чтобы доказать, что он никогда не пишет в & x + 1. Он также должен доказать, что он никогда не избавляет от указателя, который может ссылаться на массив [0], который просто как сложно.

Современные компиляторы становятся все лучше и лучше при статическом анализе, но всегда приятно помочь им и использовать ссылки.

Конечно, за исключением таких умных оптимизаций, компиляторы действительно будут обращаться к ссылкам в указатели, когда это необходимо.




A reference to a pointer is possible in C++, but the reverse is not possible means a pointer to a reference isn't possible. A reference to a pointer provides a cleaner syntax to modify the pointer. Look at this example:

#include<iostream>
using namespace std;

void swap(char * &str1, char * &str2)
{
  char *temp = str1;
  str1 = str2;
  str2 = temp;
}

int main()
{
  char *str1 = "Hi";
  char *str2 = "Hello";
  swap(str1, str2);
  cout<<"str1 is "<<str1<<endl;
  cout<<"str2 is "<<str2<<endl;
  return 0;
}

And consider the C version of the above program. In C you have to use pointer to pointer (multiple indirection), and it leads to confusion and the program may look complicated.

#include<stdio.h>
/* Swaps strings by swapping pointers */
void swap1(char **str1_ptr, char **str2_ptr)
{
  char *temp = *str1_ptr;
  *str1_ptr = *str2_ptr;
  *str2_ptr = temp;
}

int main()
{
  char *str1 = "Hi";
  char *str2 = "Hello";
  swap1(&str1, &str2);
  printf("str1 is %s, str2 is %s", str1, str2);
  return 0;
}

Visit the following for more information about reference to pointer:

As I said, a pointer to a reference isn't possible. Try the following program:

#include <iostream>
using namespace std;

int main()
{
   int x = 10;
   int *ptr = &x;
   int &*ptr1 = ptr;
}



At the risk of adding to confusion, I want to throw in some input, I'm sure it mostly depends on how the compiler implements references, but in the case of gcc the idea that a reference can only point to a variable on the stack is not actually correct, take this for example:

#include <iostream>
int main(int argc, char** argv) {
    // Create a string on the heap
    std::string *str_ptr = new std::string("THIS IS A STRING");
    // Dereference the string on the heap, and assign it to the reference
    std::string &str_ref = *str_ptr;
    // Not even a compiler warning! At least with gcc
    // Now lets try to print it's value!
    std::cout << str_ref << std::endl;
    // It works! Now lets print and compare actual memory addresses
    std::cout << str_ptr << " : " << &str_ref << std::endl;
    // Exactly the same, now remember to free the memory on the heap
    delete str_ptr;
}

Which outputs this:

THIS IS A STRING
0xbb2070 : 0xbb2070

If you notice even the memory addresses are exactly the same, meaning the reference is successfully pointing to a variable on the heap! Now if you really want to get freaky, this also works:

int main(int argc, char** argv) {
    // In the actual new declaration let immediately de-reference and assign it to the reference
    std::string &str_ref = *(new std::string("THIS IS A STRING"));
    // Once again, it works! (at least in gcc)
    std::cout << str_ref;
    // Once again it prints fine, however we have no pointer to the heap allocation, right? So how do we free the space we just ignorantly created?
    delete &str_ref;
    /*And, it works, because we are taking the memory address that the reference is
    storing, and deleting it, which is all a pointer is doing, just we have to specify
    the address with '&' whereas a pointer does that implicitly, this is sort of like
    calling delete &(*str_ptr); (which also compiles and runs fine).*/
}

Which outputs this:

THIS IS A STRING

Therefore a reference IS a pointer under the hood, they both are just storing a memory address, where the address is pointing to is irrelevant, what do you think would happen if I called std::cout << str_ref; AFTER calling delete &str_ref? Well, obviously it compiles fine, but causes a segmentation fault at runtime because it's no longer pointing at a valid variable, we essentially have a broken reference that still exists (until it falls out of scope), but is useless.

In other words, a reference is nothing but a pointer that has the pointer mechanics abstracted away, making it safer and easier to use (no accidental pointer math, no mixing up '.' and '->', etc.), assuming you don't try any nonsense like my examples above ;)

Now regardless of how a compiler handles references, it will always have some kind of pointer under the hood, because a reference must refer to a specific variable at a specific memory address for it to work as expected, there is no getting around this (hence the term 'reference').

The only major rule that's important to remember with references is that they must be defined at the time of declaration (with the exception of a reference in a header, in that case it must be defined in the constructor, after the object it's contained in is constructed it's too late to define it).

Remember, my examples above are just that, examples demonstrating what a reference is, you would never want to use a reference in those ways! For proper usage of a reference there are plenty of answers on here already that hit the nail on the head




It doesn't matter how much space it takes up since you can't actually see any side effect (without executing code) of whatever space it would take up.

On the other hand, one major difference between references and pointers is that temporaries assigned to const references live until the const reference goes out of scope.

Например:

class scope_test
{
public:
    ~scope_test() { printf("scope_test done!\n"); }
};

...

{
    const scope_test &test= scope_test();
    printf("in scope\n");
}

будет печатать:

in scope
scope_test done!

This is the language mechanism that allows ScopeGuard to work.




Both references and pointers can be used to change local variables of one function inside another function. Both of them can also be used to save copying of big objects when passed as arguments to functions or returned from functions, to get efficiency gain. Despite above similarities, there are following differences between references and pointers.

References are less powerful than pointers

1) После создания ссылки не может быть позже сделана ссылка на другой объект; он не может быть пересмотрен. Это часто делается с указателями.

2) Ссылки не могут быть NULL. Указатели часто делают NULL, чтобы указать, что они не указывают на какую-либо действительную вещь.

3) При объявлении ссылка должна быть инициализирована. Нет такого ограничения с указателями

Due to the above limitations, references in C++ cannot be used for implementing data structures like Linked List, Tree, etc. In Java, references don't have above restrictions, and can be used to implement all data structures. References being more powerful in Java, is the main reason Java doesn't need pointers.

Ссылки более безопасны и проще в использовании:

1) Безопаснее: поскольку ссылки должны быть инициализированы, дикие ссылки, такие как дикие указатели, вряд ли будут существовать. По-прежнему возможно иметь ссылки, которые не относятся к допустимому местоположению

2) Прост в использовании: для доступа к значению ссылки не требуется оператор разыменования. Они могут использоваться как обычные переменные. Оператор '&' необходим только во время объявления. Кроме того, к элементам ссылки объекта можно обращаться с помощью оператора точки ('.'), В отличие от указателей, в которых оператор стрелки (->) необходим для доступа к элементам.

Together with the above reasons, there are few places like copy constructor argument where pointer cannot be used. Reference must be used pass the argument in copy constructor. Similarly references must be used for overloading some operators like ++ .




Хотя обе ссылки и указатели используются для косвенного доступа к другому значению, существуют два важных различия между ссылками и указателями. Во-первых, ссылка всегда ссылается на объект: ошибка заключается в определении ссылки без ее инициализации. Поведение присвоения - это второе важное различие: Присвоение ссылки заменяет объект, к которому привязана ссылка; он не перепроверяет ссылку на другой объект. После инициализации ссылка всегда относится к одному и тому же базовому объекту.

Рассмотрим эти два фрагмента программы. В первом мы присваиваем один указатель другому:

int ival = 1024, ival2 = 2048;
int *pi = &ival, *pi2 = &ival2;
pi = pi2;    // pi now points to ival2

После назначения, ival, объект, адресуемый pi, остается неизменным. Назначение изменяет значение pi, указывая на другой объект. Now consider a similar program that assigns two references:

int &ri = ival, &ri2 = ival2;
ri = ri2;    // assigns ival2 to ival

This assignment changes ival, the value referenced by ri, and not the reference itself. After the assignment, the two references still refer to their original objects, and the value of those objects is now the same as well.




Вопреки распространенному мнению, возможно иметь ссылку NULL.

int * p = NULL;
int & r = *p;
r = 1;  // crash! (if you're lucky)

Конечно, это гораздо сложнее сделать с ссылкой, но если вы справитесь с этим, вы будете рвать свои волосы, пытаясь найти его. Ссылки на C ++ не являются безопасными!

Технически это неверная ссылка , а не нулевая ссылка. C ++ не поддерживает нулевые ссылки как концепцию, как вы можете найти на других языках. Существуют и другие недопустимые ссылки. Любая недопустимая ссылка повышает спектр неопределенного поведения , так же, как использование недопустимого указателя.

Фактическая ошибка заключается в разыменовании указателя NULL до назначения ссылки. Но я не знаю каких-либо компиляторов, которые будут генерировать любые ошибки при этом условии - ошибка распространяется до точки далее в коде. Вот почему эта проблема настолько коварна. В большинстве случаев, если вы разыскиваете указатель NULL, вы ругаетесь прямо в этом месте, и это не требует большой отладки, чтобы понять это.

Мой пример выше короткий и надуманный. Вот более реальный пример.

class MyClass
{
    ...
    virtual void DoSomething(int,int,int,int,int);
};

void Foo(const MyClass & bar)
{
    ...
    bar.DoSomething(i1,i2,i3,i4,i5);  // crash occurs here due to memory access violation - obvious why?
}

MyClass * GetInstance()
{
    if (somecondition)
        return NULL;
    ...
}

MyClass * p = GetInstance();
Foo(*p);

Я хочу повторить, что единственный способ получить нулевую ссылку - это неправильный код, и как только вы его получите, вы получите неопределенное поведение. Никогда не имеет смысла проверять нулевую ссылку; например, вы можете попробовать, if(&bar==NULL)... но компилятор может оптимизировать утверждение из существования! Действительная ссылка никогда не может быть NULL, поэтому из представления компилятора сравнение всегда ложно, и можно свободно исключить предложение if как мертвый код - в этом суть неопределенного поведения.

Правильный способ избежать неприятностей - избежать разыменования указателя NULL для создания ссылки. Вот автоматический способ сделать это.

template<typename T>
T& deref(T* p)
{
    if (p == NULL)
        throw std::invalid_argument(std::string("NULL reference"));
    return *p;
}

MyClass * p = GetInstance();
Foo(deref(p));

Для более старого взгляда на эту проблему от кого-то с лучшими навыками письма, см. Null References от Jim Hyslop и Herb Sutter.

Для другого примера опасности разыменования нулевого указателя см. Раздел «Неопределенное поведение при попытке передать код на другую платформу Раймондом Ченом».






Related