[Python] 使用del df.column_name从pandas DataFrame中删除列


Answers

在熊猫做这件事的最好方法是使用drop

df = df.drop('column_name', 1)

其中1编号( 0表示行, 1表示列)。

要删除列而不必重新分配df你可以这样做:

df.drop('column_name', axis=1, inplace=True)

最后,要删除列而不是列标签 ,请尝试删除,例如第1列,第2列和第4列:

df.drop(df.columns[[0, 1, 3]], axis=1)  # df.columns is zero-based pd.Index 
Question

当删除DataFrame中的列时,我使用:

del df['column_name']

这很有用。 为什么我不能使用:

del df.column_name

正如你可以访问列/ Series作为df.column_name ,我期望这个工作。




从版本0.16.1你可以做到

df.drop(['column_name'], axis = 1, inplace = True, errors = 'ignore')



TL; DR

很多努力找到一个稍微更有效的解决方案。 牺牲df.drop(dlst, 1, errors='ignore')的简单性df.drop(dlst, 1, errors='ignore')很难证明增加的复杂性

df.reindex_axis(np.setdiff1d(df.columns.values, dlst), 1)

前言
删除列在语义上与选择其他列相同。 我将展示一些其他方法来考虑。

我还会专注于一次删除多个列的通用解决方案,并允许尝试删除不存在的列。

使用这些解决方案是一般的,并且也适用于简单的情况。

建立
考虑使用pd.DataFrame df和list来删除dlst

df = pd.DataFrame(dict(zip('ABCDEFGHIJ', range(1, 11))), range(3))
dlst = list('HIJKLM')
df

   A  B  C  D  E  F  G  H  I   J
0  1  2  3  4  5  6  7  8  9  10
1  1  2  3  4  5  6  7  8  9  10
2  1  2  3  4  5  6  7  8  9  10
dlst

['H', 'I', 'J', 'K', 'L', 'M']

结果应该如下所示:

df.drop(dlst, 1, errors='ignore')

   A  B  C  D  E  F  G
0  1  2  3  4  5  6  7
1  1  2  3  4  5  6  7
2  1  2  3  4  5  6  7

由于我相当于删除了一列到选择其他列,我将它分成两种类型:

  1. 标签选择
  2. 布尔选择

标签选择

我们首先制造代表我们想要保留的列的标签列表/数组,并且没有我们想要删除的列。

  1. df.columns.difference(dlst)

    Index(['A', 'B', 'C', 'D', 'E', 'F', 'G'], dtype='object')
    
  2. np.setdiff1d(df.columns.values, dlst)

    array(['A', 'B', 'C', 'D', 'E', 'F', 'G'], dtype=object)
    
  3. df.columns.drop(dlst, errors='ignore')

    Index(['A', 'B', 'C', 'D', 'E', 'F', 'G'], dtype='object')
    
  4. list(set(df.columns.values.tolist()).difference(dlst))

    # does not preserve order
    ['E', 'D', 'B', 'F', 'G', 'A', 'C']
    
  5. [x for x in df.columns.values.tolist() if x not in dlst]

    ['A', 'B', 'C', 'D', 'E', 'F', 'G']
    

来自标签的列
为了比较选择过程,假设:

 cols = [x for x in df.columns.values.tolist() if x not in dlst]

然后我们可以评估

  1. df.loc[:, cols]
  2. df[cols]
  3. df.reindex(columns=cols)
  4. df.reindex_axis(cols, 1)

所有评估结果如下:

   A  B  C  D  E  F  G
0  1  2  3  4  5  6  7
1  1  2  3  4  5  6  7
2  1  2  3  4  5  6  7

布尔切片

我们可以构建一个用于切片的布尔数组/列表

  1. ~df.columns.isin(dlst)
  2. ~np.in1d(df.columns.values, dlst)
  3. [x not in dlst for x in df.columns.values.tolist()]
  4. (df.columns.values[:, None] != dlst).all(1)

来自布尔的列
为了比较

bools = [x not in dlst for x in df.columns.values.tolist()]
  1. df.loc[: bools]

所有评估结果如下:

   A  B  C  D  E  F  G
0  1  2  3  4  5  6  7
1  1  2  3  4  5  6  7
2  1  2  3  4  5  6  7

强健的时机

功能

setdiff1d = lambda df, dlst: np.setdiff1d(df.columns.values, dlst)
difference = lambda df, dlst: df.columns.difference(dlst)
columndrop = lambda df, dlst: df.columns.drop(dlst, errors='ignore')
setdifflst = lambda df, dlst: list(set(df.columns.values.tolist()).difference(dlst))
comprehension = lambda df, dlst: [x for x in df.columns.values.tolist() if x not in dlst]

loc = lambda df, cols: df.loc[:, cols]
slc = lambda df, cols: df[cols]
ridx = lambda df, cols: df.reindex(columns=cols)
ridxa = lambda df, cols: df.reindex_axis(cols, 1)

isin = lambda df, dlst: ~df.columns.isin(dlst)
in1d = lambda df, dlst: ~np.in1d(df.columns.values, dlst)
comp = lambda df, dlst: [x not in dlst for x in df.columns.values.tolist()]
brod = lambda df, dlst: (df.columns.values[:, None] != dlst).all(1)

测试

res1 = pd.DataFrame(
    index=pd.MultiIndex.from_product([
        'loc slc ridx ridxa'.split(),
        'setdiff1d difference columndrop setdifflst comprehension'.split(),
    ], names=['Select', 'Label']),
    columns=[10, 30, 100, 300, 1000],
    dtype=float
)

res2 = pd.DataFrame(
    index=pd.MultiIndex.from_product([
        'loc'.split(),
        'isin in1d comp brod'.split(),
    ], names=['Select', 'Label']),
    columns=[10, 30, 100, 300, 1000],
    dtype=float
)

res = res1.append(res2).sort_index()

dres = pd.Series(index=res.columns, name='drop')

for j in res.columns:
    dlst = list(range(j))
    cols = list(range(j // 2, j + j // 2))
    d = pd.DataFrame(1, range(10), cols)
    dres.at[j] = timeit('d.drop(dlst, 1, errors="ignore")', 'from __main__ import d, dlst', number=100)
    for s, l in res.index:
        stmt = '{}(d, {}(d, dlst))'.format(s, l)
        setp = 'from __main__ import d, dlst, {}, {}'.format(s, l)
        res.at[(s, l), j] = timeit(stmt, setp, number=100)

rs = res / dres
rs

                          10        30        100       300        1000
Select Label                                                           
loc    brod           0.747373  0.861979  0.891144  1.284235   3.872157
       columndrop     1.193983  1.292843  1.396841  1.484429   1.335733
       comp           0.802036  0.732326  1.149397  3.473283  25.565922
       comprehension  1.463503  1.568395  1.866441  4.421639  26.552276
       difference     1.413010  1.460863  1.587594  1.568571   1.569735
       in1d           0.818502  0.844374  0.994093  1.042360   1.076255
       isin           1.008874  0.879706  1.021712  1.001119   0.964327
       setdiff1d      1.352828  1.274061  1.483380  1.459986   1.466575
       setdifflst     1.233332  1.444521  1.714199  1.797241   1.876425
ridx   columndrop     0.903013  0.832814  0.949234  0.976366   0.982888
       comprehension  0.777445  0.827151  1.108028  3.473164  25.528879
       difference     1.086859  1.081396  1.293132  1.173044   1.237613
       setdiff1d      0.946009  0.873169  0.900185  0.908194   1.036124
       setdifflst     0.732964  0.823218  0.819748  0.990315   1.050910
ridxa  columndrop     0.835254  0.774701  0.907105  0.908006   0.932754
       comprehension  0.697749  0.762556  1.215225  3.510226  25.041832
       difference     1.055099  1.010208  1.122005  1.119575   1.383065
       setdiff1d      0.760716  0.725386  0.849949  0.879425   0.946460
       setdifflst     0.710008  0.668108  0.778060  0.871766   0.939537
slc    columndrop     1.268191  1.521264  2.646687  1.919423   1.981091
       comprehension  0.856893  0.870365  1.290730  3.564219  26.208937
       difference     1.470095  1.747211  2.886581  2.254690   2.050536
       setdiff1d      1.098427  1.133476  1.466029  2.045965   3.123452
       setdifflst     0.833700  0.846652  1.013061  1.110352   1.287831
fig, axes = plt.subplots(2, 2, figsize=(8, 6), sharey=True)
for i, (n, g) in enumerate([(n, g.xs(n)) for n, g in rs.groupby('Select')]):
    ax = axes[i // 2, i % 2]
    g.plot.bar(ax=ax, title=n)
    ax.legend_.remove()
fig.tight_layout()

这是相对于运行df.drop(dlst, 1, errors='ignore')花费的时间。 看起来毕竟那样的努力,我们只是谦虚地提高性能。

如果事实上最好的解决方案使用reindex_axis list(set(df.columns.values.tolist()).difference(dlst))上的reindexreindex_axis list(set(df.columns.values.tolist()).difference(dlst))np.setdiff1dnp.setdiff1d

rs.idxmin().pipe(
    lambda x: pd.DataFrame(
        dict(idx=x.values, val=rs.lookup(x.values, x.index)),
        x.index
    )
)

                      idx       val
10     (ridx, setdifflst)  0.653431
30    (ridxa, setdifflst)  0.746143
100   (ridxa, setdifflst)  0.816207
300    (ridx, setdifflst)  0.780157
1000  (ridxa, setdifflst)  0.861622



总是使用[]表示法是一种很好的做法,其中一个原因是属性表示法( df.column_name )不适用于编号索引:

In [1]: df = DataFrame([[1, 2, 3], [4, 5, 6]])

In [2]: df[1]
Out[2]: 
0    2
1    5
Name: 1

In [3]: df.1
  File "<ipython-input-3-e4803c0d1066>", line 1
    df.1
       ^
SyntaxError: invalid syntax



按指数下降

删除第一,第二和第四列:

df.drop(df.columns[[0,1,3]], axis=1, inplace=True)

删除第一列:

df.drop(df.columns[[0]], axis=1, inplace=True)

有一个可选参数inplace这样原始数据可以在不创建副本的情况下进行修改。

膨化

列选择,添加,删除

删除列的column-name

df.pop('column-name')

例子:

df = DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6]), ('C', [7,8, 9])], orient='index', columns=['one', 'two', 'three'])

print df

   one  two  three
A    1    2      3
B    4    5      6
C    7    8      9

df.drop(df.columns[[0]], axis=1, inplace=True)
print df

   two  three
A    2      3
B    5      6
C    8      9

three = df.pop('three')
print df

   two
A    2
B    5
C    8



点语法适用于JS,但不适用于python

Python :del df ['column_name']

JS :del df ['column_name'] OR del df.column_name