python - كيفية حساب عدد الصفوف في مجموعة في مجموعة الباندا حسب الكائن؟




group-by pandas (2)

لدي إطار بيانات df groupby عدة أعمدة منه إلى groupby :

df['col1','col2','col3','col4'].groupby(['col1','col2']).mean()

بالطريقة المذكورة أعلاه ، أكاد أحصل على الجدول (إطار البيانات) الذي أحتاج إليه. ما هو مفقود هو عمود إضافي يحتوي على عدد الصفوف في كل مجموعة. وبعبارة أخرى ، لديّ معنى ، لكنني أود أيضًا معرفة عدد الأرقام التي تم استخدامها للحصول على هذه الوسائل. على سبيل المثال في المجموعة الأولى هناك 8 قيم وفي المجموعة الثانية 10 وهكذا دواليك.


جواب سريع:

إن أبسط طريقة للقيام بذلك هي عن طريق استدعاء .size() ، والتي تُرجع pandas.Series :

df.groupby(['col1','col2']).size()


عادةً ما ترغب في الحصول على النتيجة كـ pandas.DataFrame بدلاً من ذلك ، حتى تتمكن من القيام بما يلي:

df.groupby(['col1', 'col2']).size().reset_index(name='counts')


مثال تفصيلي:

خذ بعين الاعتبار المثال التالي dataframe:

In [2]: df
Out[2]: 
  col1 col2  col3  col4  col5  col6
0    A    B  0.20 -0.61 -0.49  1.49
1    A    B -1.53 -1.01 -0.39  1.82
2    A    B -0.44  0.27  0.72  0.11
3    A    B  0.28 -1.32  0.38  0.18
4    C    D  0.12  0.59  0.81  0.66
5    C    D -0.13 -1.65 -1.64  0.50
6    C    D -1.42 -0.11 -0.18 -0.44
7    E    F -0.00  1.42 -0.26  1.17
8    E    F  0.91 -0.47  1.35 -0.34
9    G    H  1.48 -0.63 -1.14  0.17

دعونا أولاً نستخدم .size() للحصول على عدد الصفوف:

In [3]: df.groupby(['col1', 'col2']).size()
Out[3]: 
col1  col2
A     B       4
C     D       3
E     F       2
G     H       1
dtype: int64

ثم دعونا نستخدم .size().reset_index(name='counts') للحصول على عدد الصفوف:

In [4]: df.groupby(['col1', 'col2']).size().reset_index(name='counts')
Out[4]: 
  col1 col2  counts
0    A    B       4
1    C    D       3
2    E    F       2
3    G    H       1


بما في ذلك النتائج لمزيد من الإحصاءات

عندما تريد حساب الإحصائيات على البيانات المجمّعة ، عادةً ما تبدو كالتالي:

In [5]: (df
   ...: .groupby(['col1', 'col2'])
   ...: .agg({
   ...:     'col3': ['mean', 'count'], 
   ...:     'col4': ['median', 'min', 'count']
   ...: }))
Out[5]: 
            col4                  col3      
          median   min count      mean count
col1 col2                                   
A    B    -0.810 -1.32     4 -0.372500     4
C    D    -0.110 -1.65     3 -0.476667     3
E    F     0.475 -0.47     2  0.455000     2
G    H    -0.630 -0.63     1  1.480000     1

النتيجة أعلاه مزعجة قليلاً للتعامل معها بسبب تسميات الأعمدة المتداخلة ، وأيضاً لأن عدد الصفوف على أساس كل عمود.

للحصول على مزيد من التحكم في الإخراج ، عادةً ما أقوم بتقسيم الإحصائيات إلى مجموعات فردية ، ثم دمجها معًا باستخدام عملية join . تبدو هكذا:

In [6]: gb = df.groupby(['col1', 'col2'])
   ...: counts = gb.size().to_frame(name='counts')
   ...: (counts
   ...:  .join(gb.agg({'col3': 'mean'}).rename(columns={'col3': 'col3_mean'}))
   ...:  .join(gb.agg({'col4': 'median'}).rename(columns={'col4': 'col4_median'}))
   ...:  .join(gb.agg({'col4': 'min'}).rename(columns={'col4': 'col4_min'}))
   ...:  .reset_index()
   ...: )
   ...: 
Out[6]: 
  col1 col2  counts  col3_mean  col4_median  col4_min
0    A    B       4  -0.372500       -0.810     -1.32
1    C    D       3  -0.476667       -0.110     -1.65
2    E    F       2   0.455000        0.475     -0.47
3    G    H       1   1.480000       -0.630     -0.63


الحواشي

يظهر الرمز المستخدم لإنشاء بيانات الاختبار أدناه:

In [1]: import numpy as np
   ...: import pandas as pd 
   ...: 
   ...: keys = np.array([
   ...:         ['A', 'B'],
   ...:         ['A', 'B'],
   ...:         ['A', 'B'],
   ...:         ['A', 'B'],
   ...:         ['C', 'D'],
   ...:         ['C', 'D'],
   ...:         ['C', 'D'],
   ...:         ['E', 'F'],
   ...:         ['E', 'F'],
   ...:         ['G', 'H'] 
   ...:         ])
   ...: 
   ...: df = pd.DataFrame(
   ...:     np.hstack([keys,np.random.randn(10,4).round(2)]), 
   ...:     columns = ['col1', 'col2', 'col3', 'col4', 'col5', 'col6']
   ...: )
   ...: 
   ...: df[['col3', 'col4', 'col5', 'col6']] = \
   ...:     df[['col3', 'col4', 'col5', 'col6']].astype(float)
   ...: 


تنصل:

إذا كانت بعض الأعمدة التي تقوم بتجميعها تحتوي على قيم فارغة ، فأنت تريد حقاً أن تبحث في حساب صف المجموعة كتجميع مستقل لكل عمود. وإلا قد يتم تضليلك بشأن عدد السجلات التي يتم استخدامها فعليًا لحساب أشياء مثل المتوسط ​​لأن الباندا سوف تسقط إدخالات NaN في حساب المتوسط ​​دون أن تخبرك عنها.


على كائن مجموعة ، يمكن أن تأخذ الدالة agg قائمة لتطبيق عدة طرق تجميع في وقت واحد. يجب أن يمنحك ذلك النتيجة التي تحتاجها:

df[['col1', 'col2', 'col3', 'col4']].groupby(['col1', 'col2']).agg(['mean', 'count'])




distinct