design-patterns example - What is dependency injection?




c# java (25)

There have been several questions already posted with specific questions about dependency injection, such as when to use it and what frameworks are there for it. However,

What is dependency injection and when/why should or shouldn't it be used?


Answers

I know there are already many answers, but I found this very helpful: http://tutorials.jenkov.com/dependency-injection/index.html

No Dependency:

public class MyDao {

  protected DataSource dataSource =
    new DataSourceImpl("driver", "url", "user", "password");

  //data access methods...
  public Person readPerson(int primaryKey) {...}

}

Dependency:

public class MyDao {

  protected DataSource dataSource = null;

  public MyDao(String driver, String url, String user, String
 password){
    this.dataSource = new DataSourceImpl(driver, url, user, password);
  }

  //data access methods...
  public Person readPerson(int primaryKey)
  {...}

}

Notice how the DataSourceImpl instantiation is moved into a constructor. The constructor takes four parameters which are the four values needed by the DataSourceImpl. Though the MyDao class still depends on these four values, it no longer satisfies these dependencies itself. They are provided by whatever class creating a MyDao instance.


Dependency Injection is a type of implementation of the "Inversion of Control" principle on which is based Frameworks building.

Frameworks as stated in "Design Pattern" of GoF are classes that implement the main control flow logic raising the developer to do that, in this way Frameworks realize the inversion of control principle.

A way to implement as a technique, and not as class hierarchy, this IoC principle it is just Dependency Injection.

DI consists mainly into delegate the mapping of classes instances and type reference to that instances, to an external "entity": an object, static class, component, framework, etc...

Classes instances are the "dependencies", the external binding of the calling component with the class instance through the reference it is the "injection".

Obviously you can implement this technique in many way as you want from OOP point of view, see for example constructor injection, setter injection, interface injection.

Delegating a third party to carry out the task of match a ref to an object it is very useful when you want to completely separate a component that needs some services from the same services implementation.

In this way, when designing components, you can focus exclusively on their architecture and their specific logic, trusting on interfaces for collaborating with other objects without worry about any type of implementation changes of objects/services used, also if the same object you are using will be totally replaced (obviously respecting the interface).


Basically, instead of having your objects creating a dependency or asking a factory object to make one for them, you pass the needed dependencies in to the object externally, and you make it somebody else's problem. This "someone" is either an object further up the dependency graph, or a dependency injector (framework) that builds the dependency graph. A dependency as I'm using it here is any other object the current object needs to hold a reference to.

One of the major advantages of dependency injection is that it can make testing lots easier. Suppose you have an object which in its constructor does something like:

public SomeClass() {
    myObject = Factory.getObject();
}

This can be troublesome when all you want to do is run some unit tests on SomeClass, especially if myObject is something that does complex disk or network access. So now you're looking at mocking myObject but also somehow intercepting the factory call. Hard. Instead, pass the object in as an argument to the constructor. Now you've moved the problem elsewhere, but testing can become lots easier. Just make a dummy myObject and pass that in. The constructor would now look a bit like:

public SomeClass (MyClass myObject) {
    this.myObject = myObject;
}

This is one style of dependency injection - via the constructor. Several mechanisms are possible.

  • As noted in the comments, one common alternative is to define a do-nothing constructor, and have the dependencies injected via property setters (h/t @MikeVella).
  • Martin Fowler documents a third alternative (h/t @MarcDix), where classes explicitly implement an interface for the dependencies they wish injected.

When not using dependency injection (such as in classes that do too much work in their constructors etc.), it tends to become much harder to isolate components in unit testing.

Back in 2013 when I wrote this answer, this was a major theme on the Google Testing Blog. This remains the biggest advantage to me, as you may not always need the extra flexibility in your run-time design (for instance, for service locator or similar patterns), but you do often need to be able to isolate your classes during testing.


Example, we have 2 class Client and Service. Client will use Service

public class Service {
    public void doSomeThingInService() {
        // ...
    }
}

Without Dependency Injection

Way 1)

public class Client {
    public void doSomeThingInClient() {
        Service service = new Service();
        service.doSomeThingInService();
    }
}

Way 2)

public class Client {
    Service service = new Service();
    public void doSomeThingInClient() {
        service.doSomeThingInService();
    }
}

Way 3)

public class Client {
    Service service;
    public Client() {
        service = new Service();
    }
    public void doSomeThingInClient() {
        service.doSomeThingInService();
    }
}

1) 2) 3) Using

Client client = new Client();
client.doSomeThingInService();

Advantages

  • Simple

Disadvantages

  • Hard for test Client class
  • When we change Service constructor, we need to change code in all place create Service object

Use Dependency Injection

Way 1) Constructor injection

public class Client {
    Service service;

    Client(Service service) {
        this.service = service;
    }

    // Example Client has 2 dependency 
    // Client(Service service, IDatabas database) {
    //    this.service = service;
    //    this.database = database;
    // }

    public void doSomeThingInClient() {
        service.doSomeThingInService();
    }
}

Using

Client client = new Client(new Service());
// Client client = new Client(new Service(), new SqliteDatabase());
client.doSomeThingInClient();

Way 2) Setter injection

public class Client {
    Service service;

    public void setService(Service service) {
        this.service = service;
    }

    public void doSomeThingInClient() {
        service.doSomeThingInService();
    }
}

Using

Client client = new Client();
client.setService(new Service());
client.doSomeThingInClient();

Way 3) Interface injection

Check https://en.wikipedia.org/wiki/Dependency_injection

===

Now, this code is already follow Dependency Injection and it is easier for test Client class.
However, we still use new Service() many time and it is not good when change Service constructor. To prevent it, we can use DI injector like
1) Simple manual Injector

public class Injector {
    public static Service provideService(){
        return new Service();
    }

    public static IDatabase provideDatatBase(){
        return new SqliteDatabase();
    }
    public static ObjectA provideObjectA(){
        return new ObjectA(provideService(...));
    }
}

Using

Service service = Injector.provideService();

2) Use library: For Android dagger2

Advantages

  • Make test easier
  • When you change the Service, you only need to change it in Injector class
  • If you use use Constructor Injection, when you look at constructor of Client, you will see how many dependency of Client class

Disadvantages

  • If you use use Constructor Injection, the Service object is created when Client created, sometime we use function in Client class without use Service so created Service is wasted

Dependency Injection definition

https://en.wikipedia.org/wiki/Dependency_injection

A dependency is an object that can be used (Service)
An injection is the passing of a dependency (Service) to a dependent object (Client) that would use it


Dependency Injection is a practice where objects are designed in a manner where they receive instances of the objects from other pieces of code, instead of constructing them internally. This means that any object implementing the interface which is required by the object can be substituted in without changing the code, which simplifies testing, and improves decoupling.

For example, consider these clases:

public class PersonService {
  public void addManager( Person employee, Person newManager ) { ... }
  public void removeManager( Person employee, Person oldManager ) { ... }
  public Group getGroupByManager( Person manager ) { ... }
}

public class GroupMembershipService() {
  public void addPersonToGroup( Person person, Group group ) { ... }
  public void removePersonFromGroup( Person person, Group group ) { ... }
} 

In this example, the implementation of PersonService::addManager and PersonService::removeManager would need an instance of the GroupMembershipService in order to do its work. Without Dependency Injection, the traditional way of doing this would be to instantiate a new GroupMembershipService in the constructor of PersonService and use that instance attribute in both functions. However, if the constructor of GroupMembershipService has multiple things it requires, or worse yet, there are some initialization "setters" that need to be called on the GroupMembershipService, the code grows rather quickly, and the PersonService now depends not only on the GroupMembershipService but also everything else that GroupMembershipService depends on. Furthermore, the linkage to GroupMembershipService is hardcoded into the PersonService which means that you can't "dummy up" a GroupMembershipService for testing purposes, or to use a strategy pattern in different parts of your application.

With Dependency Injection, instead of instantiating the GroupMembershipService within your PersonService, you'd either pass it in to the PersonService constructor, or else add a Property (getter and setter) to set a local instance of it. This means that your PersonService no longer has to worry about how to create a GroupMembershipService, it just accepts the ones it's given, and works with them. This also means that anything which is a subclass of GroupMembershipService, or implements the GroupMembershipService interface can be "injected" into the PersonService, and the PersonService doesn't need to know about the change.


The popular answers are unhelpful, because they define dependency injection in a way that isn't useful. Let's agree that by "dependency" we mean some pre-existing other object that our object X needs. But we don't say we're doing "dependency injection" when we say

$foo = Foo->new($bar);

We just call that passing parameters into the constructor. We've been doing that regularly ever since constructors were invented.

"Dependency injection" is considered a type of "inversion of control", which means that some logic is taken out of the caller. That isn't the case when the caller passes in parameters, so if that were DI, DI would not imply inversion of control.

DI means there is an intermediate level between the caller and the constructor which manages dependencies. A Makefile is a simple example of dependency injection. The "caller" is the person typing "make bar" on the command line, and the "constructor" is the compiler. The Makefile specifies that bar depends on foo, and it does a

gcc -c foo.cpp; gcc -c bar.cpp

before doing a

gcc foo.o bar.o -o bar

The person typing "make bar" doesn't need to know that bar depends on foo. The dependency was injected between "make bar" and gcc.

The main purpose of the intermediate level is not just to pass in the dependencies to the constructor, but to list all the dependencies in just one place, and to hide them from the coder (not to make the coder provide them).

Usually the intermediate level provides factories for the constructed objects, which must provide a role that each requested object type must satisfy. That's because by having an intermediate level that hides the details of construction, you've already incurred the abstraction penalty imposed by factories, so you might as well use factories.


Dependency Injection (DI) is part of Dependency Inversion Principle (DIP) practice, which is also called Inversion of Control (IoC). Basically you need to do DIP because you want to make your code more modular and unit testable, instead of just one monolithic system. So you start identifying parts of the code that can be separated from the class and abstracted away. Now the implementation of the abstraction need to be injected from outside of the class. Normally this can be done via constructor. So you create a constructor that accepts the abstraction as a parameter, and this is called dependency injection (via constructor). For more explanation about DIP, DI, and IoC container you can read Here


from Book Apress.Spring.Persistence.with.Hibernate.Oct.2010

The purpose of dependency injection is to decouple the work of resolving external software components from your application business logic.Without dependency injection, the details of how a component accesses required services can get muddled in with the component’s code. This not only increases the potential for errors, adds code bloat, and magnifies maintenance complexities; it couples components together more closely, making it difficult to modify dependencies when refactoring or testing.


I think since everyone has written for DI, let me ask a few questions..

  1. When you have a configuration of DI where all the actual implementations(not interfaces) that are going to be injected into a class (for e.g services to a controller) why is that not some sort of hard-coding?
  2. What if I want to change the object at runtime? For example, my config already says when I instantiate MyController, inject for FileLogger as ILogger. But I might want to inject DatabaseLogger.
  3. Everytime I want to change what objects my AClass needs, I need to now look into two places - The class itself and the configuration file. How does that make life easier?
  4. If Aproperty of AClass is not injected, is it harder to mock it out?
  5. Going back to the first question. If using new object() is bad, how come we inject the implementation and not the interface? I think a lot of you are saying we're in fact injecting the interface but the configuration makes you specify the implementation of that interface ..not at runtime .. it is hardcoded during compile time.

This is based on the answer @Adam N posted.

Why does PersonService no longer have to worry about GroupMembershipService? You just mentioned GroupMembership has multiple things(objects/properties) it depends on. If GMService was required in PService, you'd have it as a property. You can mock that out regardless of whether you injected it or not. The only time I'd like it to be injected is if GMService had more specific child classes, which you wouldn't know until runtime. Then you'd want to inject the subclass. Or if you wanted to use that as either singleton or prototype. To be honest, the configuration file has everything hardcoded as far as what subclass for a type (interface) it is going to inject during compile time.

EDIT

A nice comment by Jose Maria Arranz on DI

DI increases cohesion by removing any need to determine the direction of dependency and write any glue code.

False. The direction of dependencies is in XML form or as annotations, your dependencies are written as XML code and annotations. XML and annotations ARE source code.

DI reduces coupling by making all of your components modular (i.e. replacable) and have well-defined interfaces to each other.

False. You do not need a DI framework to build a modular code based on interfaces.

About replaceable: with a very simple .properties archive and Class.forName you can define wich classes can change. If ANY class of your code can be changed, Java is not for you, use an scripting language. By the way: annotations cannot be changed without recompiling.

In my opinion there is one only reason for DI frameworks: boiler plate reduction. With a well done factory system you can do the same, more controlled and more predictable as your preferred DI framework, DI frameworks promise code reduction (XML and annotations are source code too). The problem is this boiler plate reduction is just real in very very simple cases (one instance-per class and similar), sometimes in the real world picking the appropriated service object is not as easy as mapping a class to a singleton object.


Let's imagine that you want to go fishing:

  • Without dependency injection, you need to take care of everything yourself. You need to find a boat, to buy a fishing rod, to look for bait, etc. It's possible, of course, but it puts a lot of responsibility on you. In software terms, it means that you have to perform a lookup for all these things.

  • With dependency injection, someone else takes care of all the preparation and makes the required equipment available to you. You will receive ("be injected") the boat, the fishing rod and the bait - all ready to use.


This is the most simple explanation about Dependency Injection and Dependency Injection Container I have ever seen:

Without Dependency Injection

  • Application needs Foo (e.g. a controller), so:
  • Application creates Foo
  • Application calls Foo
    • Foo needs Bar (e.g. a service), so:
    • Foo creates Bar
    • Foo calls Bar
      • Bar needs Bim (a service, a repository, …), so:
      • Bar creates Bim
      • Bar does something

With Dependency Injection

  • Application needs Foo, which needs Bar, which needs Bim, so:
  • Application creates Bim
  • Application creates Bar and gives it Bim
  • Application creates Foo and gives it Bar
  • Application calls Foo
    • Foo calls Bar
      • Bar does something

Using a Dependency Injection Container

  • Application needs Foo so:
  • Application gets Foo from the Container, so:
    • Container creates Bim
    • Container creates Bar and gives it Bim
    • Container creates Foo and gives it Bar
  • Application calls Foo
    • Foo calls Bar
      • Bar does something

Dependency Injection and dependency Injection Containers are different things:

  • Dependency Injection is a method for writing better code
  • a DI Container is a tool to help injecting dependencies

You don't need a container to do dependency injection. However a container can help you.


The best analogy I can think of is the surgeon and his assistant(s) in an operation theater, where the surgeon is the main person and his assistant who provides the various surgical components when he needs it so that the surgeon can concentrate on the one thing he does best (surgery). Without the assistant the surgeon has to get the components himself every time he needs one.

DI for short, is a technique to remove a common additional responsibility (burden) on components to fetch the dependent components, by providing them to it.

DI brings you closer to the Single Responsibility (SR) principle, like the surgeon who can concentrate on surgery.

When to use DI : I would recommend using DI in almost all production projects ( small/big), particularly in ever changing business environments :)

Why : Because you want your code to be easily testable, mockable etc so that you can quickly test your changes and push it to the market. Besides why would you not when you there are lots of awesome free tools/frameworks to support you in your journey to a codebase where you have more control.


Dependency Injection means a way (actually any-way) for one part of code (e.g a class) to have access to dependencies (other parts of code, e.g other classes, it depends upon) in a modular way without them being hardcoded (so they can change or be overriden freely, or even be loaded at another time, as needed)

(and ps , yes it has become an overly-hyped 25$ name for a rather simple, concept), my .25 cents


It means that objects should only have as many dependencies as is needed to do their job and the dependencies should be few. Furthermore, an object’s dependencies should be on interfaces and not on “concrete” objects, when possible. (A concrete object is any object created with the keyword new.) Loose coupling promotes greater reusability, easier maintainability, and allows you to easily provide “mock” objects in place of expensive services.

The “Dependency Injection” (DI) is also known as “Inversion of Control” (IoC), can be used as a technique for encouraging this loose coupling.

There are two primary approaches to implementing DI:

  1. Constructor injection
  2. Setter injection

Constructor injection

It’s the technique of passing objects dependencies to its constructor.

Note that the constructor accepts an interface and not concrete object. Also, note that an exception is thrown if the orderDao parameter is null. This emphasizes the importance of receiving a valid dependency. Constructor Injection is, in my opinion, the preferred mechanism for giving an object its dependencies. It is clear to the developer while invoking the object which dependencies need to be given to the “Person” object for proper execution.

Setter Injection

But consider the following example… Suppose you have a class with ten methods that have no dependencies, but you’re adding a new method that does have a dependency on IDAO. You could change the constructor to use Constructor Injection, but this may force you to changes to all constructor calls all over the place. Alternatively, you could just add a new constructor that takes the dependency, but then how does a developer easily know when to use one constructor over the other. Finally, if the dependency is very expensive to create, why should it be created and passed to the constructor when it may only be used rarely? “Setter Injection” is another DI technique that can be used in situations such as this.

Setter Injection does not force dependencies to be passed to the constructor. Instead, the dependencies are set onto public properties exposed by the object in need. As implied previously, the primary motivators for doing this include:

  1. Supporting dependency injection without having to modify the constructor of a legacy class.
  2. Allowing expensive resources or services to be created as late as possible and only when needed.

Here is the example of how the above code would look like:

public class Person {
    public Person() {}

    public IDAO Address {
        set { addressdao = value; }
        get {
            if (addressdao == null)
              throw new MemberAccessException("addressdao" +
                             " has not been initialized");
            return addressdao;
        }
    }

    public Address GetAddress() {
       // ... code that uses the addressdao object
       // to fetch address details from the datasource ...
    }

    // Should not be called directly;
    // use the public property instead
    private IDAO addressdao;

I found this funny example in terms of loose coupling:

Any application is composed of many objects that collaborate with each other to perform some useful stuff. Traditionally each object is responsible for obtaining its own references to the dependent objects (dependencies) it collaborate with. This leads to highly coupled classes and hard-to-test code.

For example, consider a Car object.

A Car depends on wheels, engine, fuel, battery, etc. to run. Traditionally we define the brand of such dependent objects along with the definition of the Car object.

Without Dependency Injection (DI):

class Car{
  private Wheel wh = new NepaliRubberWheel();
  private Battery bt = new ExcideBattery();

  //The rest
}

Here, the Car object is responsible for creating the dependent objects.

What if we want to change the type of its dependent object - say Wheel - after the initial NepaliRubberWheel() punctures? We need to recreate the Car object with its new dependency say ChineseRubberWheel(), but only the Car manufacturer can do that.

Then what does the Dependency Injection do us for...?

When using dependency injection, objects are given their dependencies at run time rather than compile time (car manufacturing time). So that we can now change the Wheel whenever we want. Here, the dependency (wheel) can be injected into Car at run time.

After using dependency injection:

Here, we are injecting the dependencies (Wheel and Battery) at runtime. Hence the term : Dependency Injection.

class Car{
  private Wheel wh = [Inject an Instance of Wheel (dependency of car) at runtime]
  private Battery bt = [Inject an Instance of Battery (dependency of car) at runtime]
  Car(Wheel wh,Battery bt) {
      this.wh = wh;
      this.bt = bt;
  }
  //Or we can have setters
  void setWheel(Wheel wh) {
      this.wh = wh;
  }
}

Source: Understanding dependency injection


The whole point of Dependency Injection (DI) is to keep application source code clean and stable:

  • clean of dependency initialization code
  • stable regardless of dependency used

Practically, every design pattern separates concerns to make future changes affect minimum files.

The specific domain of DI is delegation of dependency configuration and initialization.

Example: DI with shell script

If you occasionally work outside of Java, recall how source is often used in many scripting languages (Shell, Tcl, etc., or even import in Python misused for this purpose).

Consider simple dependent.sh script:

#!/bin/sh
# Dependent
touch         "one.txt" "two.txt"
archive_files "one.txt" "two.txt"

The script is dependent: it won't execute successfully on its own (archive_files is not defined).

You define archive_files in archive_files_zip.sh implementation script (using zip in this case):

#!/bin/sh
# Dependency
function archive_files {
    zip files.zip "[email protected]"
}

Instead of source-ing implementation script directly in the dependent one, you use an injector.sh "container" which wraps both "components":

#!/bin/sh 
# Injector
source ./archive_files_zip.sh
source ./dependent.sh

The archive_files dependency has just been injected into dependent script.

You could have injected dependency which implements archive_files using tar or xz.

Example: removing DI

If dependent.sh script used dependencies directly, the approach would be called dependency lookup (which is opposite to dependency injection):

#!/bin/sh
# Dependent

# dependency look-up
source ./archive_files_zip.sh

touch         "one.txt" "two.txt"
archive_files "one.txt" "two.txt"

Now the problem is that dependent "component" has to perform initialization itself.

The "component"'s source code is neither clean nor stable because every changes in initialization of dependencies requires new release for "components"'s source code file as well.

Last words

DI is not as largely emphasized and popularized as in Java frameworks.

But it's a generic approach to split concerns of:

  • application development (single source code release lifecycle)
  • application deployment (multiple target environments with independent lifecycles)

Using configuration only with dependency lookup does not help as number of configuration parameters may change per dependency (e.g. new authentication type) as well as number of supported types of dependencies (e.g. new database type).


In simple words dependency injection (DI) is the way to remove dependencies or tight coupling between different object. Dependency Injection gives a cohesive behavior to each object.

DI is the implementation of IOC principal of Spring which says "Don't call us we will call you". Using dependency injection programmer doesn't need to create object using the new keyword.

Objects are once loaded in Spring container and then we reuse them whenever we need them by fetching those objects from Spring container using getBean(String beanName) method.


I would propose a slightly different, short and precise definition of what Dependency Injection is, focusing on the primary goal, not on the technical means (following along from here):

Dependency Injection is the process of creating the static, stateless graph of service objects, where each service is parametrised by its dependencies.

The objects that we create in our applications (regardless if we use Java, C# or other object-oriented language) usually fall into one of two categories: stateless, static and global “service objects” (modules), and stateful, dynamic and local “data objects”.

The module graph - the graph of service objects - is typically created on application startup. This can be done using a container, such as Spring, but can also be done manually, by passing parameters to object constructors. Both ways have their pros and cons, but a framework definitely isn’t necessary to use DI in your application.

One requirement is that the services must be parametrised by their dependencies. What this means exactly depends on the language and approach taken in a given system. Usually, this takes the form of constructor parameters, but using setters is also an option. This also means that the dependencies of a service are hidden (when invoking a service method) from the users of the service.

When to use? I would say whenever the application is large enough that encapsulating logic into separate modules, with a dependency graph between the modules gives a gain in readability and explorability of the code.


All the above answers are good, my aim is to explain the concept in a simple way so that anyone without a programming knowledge can also understand concept

Dependency injection is one of the design pattern that help us to create complex systems in a simpler manner.

We can see a wide variety of application of this pattern in our day to day life. Some of the examples are Tape recorder, VCD, CD Drive etc.

The above image is an image of Reel-to-reel portable tape recorder, mid-20th century. Source.

The primary intention of a tape recorder machine is to record or playback sound.While designing a system it require a reel to record or playback sound or music. we can place the reel inside the machine or we can provide a hook for the reel where it can be placed.if we opt for the second one that is placing a hook for reel, we are getting an added benefit of playing any music by changing the reel. and also reducing the function playing whatever in the reel.

The main benefits we achieved by using dependency injection.

  • High cohesion and loose coupling.
  • Externalizing dependency and looking only on responsibility.
  • Making things as components and to combine to form a large systems with high capabilities.
  • It helps to develop high quality components since they are independently developed they are properly tested.
  • It helps to replace the component with another if one fails.

Now a days these concept forms the basis of well known frameworks in programming world. The Spring Angular etc are the well-known software frameworks built on the top of this concept

Dependency injection is a pattern used to create instances of objects that other objects rely upon without knowing at compile time which class will be used to provide that functionality or simply the way of injecting properties to an object is called dependency injection.

Example for Dependency injection

Previously we are writing code like this

Public MyClass{
 DependentClass dependentObject
 /*
  At somewhere in our code we need to instantiate 
  the object with new operator  inorder to use it or perform some method.
  */ 
  dependentObject= new DependentClass();
  dependentObject.someMethod();
}

With Dependency injection, the dependency injector will take off the instantiation for us

Public MyClass{
 /* Dependency injector will instantiate object*/
 DependentClass dependentObject

 /*
  At somewhere in our code we perform some method. 
  The process of  instantiation will be handled by the dependency injector
 */ 

  dependentObject.someMethod();
}

You can also read

Difference between Inversion of Control & Dependency Injection


Dependency Injection (DI) is one from Design Patterns, which uses the basic feature of OOP - the relationship in one object with another object. While inheritance inherits one object to do more complex and specific another object, relationship or association simply creates a pointer to another object from one object using attribute. The power of DI is in combination with other features of OOP as are interfaces and hiding code. Suppose, we have a customer (subscriber) in the library, which can borrow only one book for simplicity.

Interface of book:

package com.deepam.hidden;

public interface BookInterface {

public BookInterface setHeight(int height);
public BookInterface setPages(int pages);   
public int getHeight();
public int getPages();  

public String toString();
}

Next we can have many kind of books; one of type is fiction:

package com.deepam.hidden;

public class FictionBook implements BookInterface {
int height = 0; // height in cm
int pages = 0; // number of pages

/** constructor */
public FictionBook() {
    // TODO Auto-generated constructor stub
}

@Override
public FictionBook setHeight(int height) {
  this.height = height;
  return this;
}

@Override
public FictionBook setPages(int pages) {
  this.pages = pages;
  return this;      
}

@Override
public int getHeight() {
    // TODO Auto-generated method stub
    return height;
}

@Override
public int getPages() {
    // TODO Auto-generated method stub
    return pages;
}

@Override
public String toString(){
    return ("height: " + height + ", " + "pages: " + pages);
}
}

Now subscriber can have association to the book:

package com.deepam.hidden;

import java.lang.reflect.Constructor;
import java.lang.reflect.InvocationTargetException;

public class Subscriber {
BookInterface book;

/** constructor*/
public Subscriber() {
    // TODO Auto-generated constructor stub
}

// injection I
public void setBook(BookInterface book) {
    this.book = book;
}

// injection II
public BookInterface setBook(String bookName) {
    try {
        Class<?> cl = Class.forName(bookName);
        Constructor<?> constructor = cl.getConstructor(); // use it for parameters in constructor
        BookInterface book = (BookInterface) constructor.newInstance();
        //book = (BookInterface) Class.forName(bookName).newInstance();
    } catch (InstantiationException e) {
        e.printStackTrace();
    } catch (IllegalAccessException e) {
        e.printStackTrace();
    } catch (ClassNotFoundException e) {
        e.printStackTrace();
    } catch (NoSuchMethodException e) {
        e.printStackTrace();
    } catch (SecurityException e) {
        e.printStackTrace();
    } catch (IllegalArgumentException e) {
        e.printStackTrace();
    } catch (InvocationTargetException e) {
        e.printStackTrace();
    }
    return book;
}

public BookInterface getBook() {
  return book;
}

public static void main(String[] args) {

}

}

All the three classes can be hidden for it's own implementation. Now we can use this code for DI:

package com.deepam.implement;

import com.deepam.hidden.Subscriber;
import com.deepam.hidden.FictionBook;

public class CallHiddenImplBook {

public CallHiddenImplBook() {
    // TODO Auto-generated constructor stub
}

public void doIt() {
    Subscriber ab = new Subscriber();

    // injection I
    FictionBook bookI = new FictionBook();
    bookI.setHeight(30); // cm
    bookI.setPages(250);
    ab.setBook(bookI); // inject
    System.out.println("injection I " + ab.getBook().toString());

    // injection II
    FictionBook bookII = ((FictionBook) ab.setBook("com.deepam.hidden.FictionBook")).setHeight(5).setPages(108); // inject and set
    System.out.println("injection II " + ab.getBook().toString());      
}

public static void main(String[] args) {
    CallHiddenImplBook kh = new CallHiddenImplBook();
    kh.doIt();
}
}

There are many different ways how to use dependency injection. It is possible to combine it with Singleton, etc., but still in basic it is only association realized by creating attribute of object type inside another object. The usefulness is only and only in feature, that code, which we should write again and again is always prepared and done for us forward. This is why DI so closely binded with Inversion of Control (IoC) which means, that our program passes control another running module, which does injections of beans to our code. (Each object, which can be injected can be signed or considered as a Bean.) For example in Spring it is done by creating and initialization ApplicationContext container, which does this work for us. We simply in our code create the Context and invoke initialization the beans. In that moment injection has been done automatically.


Doesn't "dependency injection" just mean using parameterized constructors and public setters?

James Shore's article shows the following examples for comparison.

Constructor without dependency injection:

public class Example { 
  private DatabaseThingie myDatabase; 

  public Example() { 
    myDatabase = new DatabaseThingie(); 
  } 

  public void doStuff() { 
    ... 
    myDatabase.getData(); 
    ... 
  } 
} 

Constructor with dependency injection:

public class Example { 
  private DatabaseThingie myDatabase; 

  public Example(DatabaseThingie useThisDatabaseInstead) { 
    myDatabase = useThisDatabaseInstead; 
  }

  public void doStuff() { 
    ... 
    myDatabase.getData(); 
    ... 
  } 
}

Dependency injection is one possible solution to what could generally be termed the "Dependency Obfuscation" requirement. Dependency Obfuscation is a method of taking the 'obvious' nature out of the process of providing a dependency to a class that requires it and therefore obfuscating, in some way, the provision of said dependency to said class. This is not necessarily a bad thing. In fact, by obfuscating the manner by which a dependency is provided to a class then something outside the class is responsible for creating the dependency which means, in various scenarios, a different implementation of the dependency can be supplied to the class without making any changes to the class. This is great for switching between production and testing modes (eg., using a 'mock' service dependency).

Unfortunately the bad part is that some people have assumed you need a specialized framework to do dependency obfuscation and that you are somehow a 'lesser' programmer if you choose not to use a particular framework to do it. Another, extremely disturbing myth, believed by many, is that dependency injection is the only way of achieving dependency obfuscation. This is demonstrably and historically and obviously 100% wrong but you will have trouble convincing some people that there are alternatives to dependency injection for your dependency obfuscation requirements.

Programmers have understood the dependency obfuscation requirement for years and many alternative solutions have evolved both before and after dependency injection was conceived. There are Factory patterns but there are also many options using ThreadLocal where no injection to a particular instance is needed - the dependency is effectively injected into the thread which has the benefit of making the object available (via convenience static getter methods) to any class that requires it without having to add annotations to the classes that require it and set up intricate XML 'glue' to make it happen. When your dependencies are required for persistence (JPA/JDO or whatever) it allows you to achieve 'tranaparent persistence' much easier and with domain model and business model classes made up purely of POJOs (i.e. no framework specific/locked in annotations).



To make Dependency Injection concept simple to understand. Let's take an example of switch button to toggle(on/off) a bulb.

Without Dependency Injection

Switch needs to know beforehand which bulb I am connected to (hard-coded dependency). So,

Switch -> PermanentBulb //switch is directly connected to permanent bulb, testing not possible easily

Switch(){
PermanentBulb = new Bulb();
PermanentBulb.Toggle();
}

With Dependency Injection

Switch only knows I need to turn on/off whichever Bulb is passed to me. So,

Switch -> Bulb1 OR Bulb2 OR NightBulb (injected dependency)

Switch(AnyBulb){ //pass it whichever bulb you like
AnyBulb.Toggle();
}

Modifying James Example for Switch and Bulb:

public class SwitchTest { 
  TestToggleBulb() { 
    MockBulb mockbulb = new MockBulb(); 

    // MockBulb is a subclass of Bulb, so we can 
    // "inject" it here: 
    Switch switch = new Switch(mockBulb); 

    switch.ToggleBulb(); 
    mockBulb.AssertToggleWasCalled(); 
  } 
}

public class Switch { 
  private Bulb myBulb; 

  public Switch() { 
    myBulb = new Bulb(); 
  } 

  public Switch(Bulb useThisBulbInstead) { 
    myBulb = useThisBulbInstead; 
  } 

  public void ToggleBulb() { 
    ... 
    myBulb.Toggle(); 
    ... 
  } 
}`

Here's my own initial reaction: Basically the same downsides of any pattern.

  • it takes time to learn
  • if misunderstood it can lead to more harm than good
  • if taken to an extreme it can be more work than would justify the benefit




design-patterns language-agnostic dependency-injection terminology