value - python split list into two




How do you split a list into evenly sized chunks? (20)

Critique of other answers here:

None of these answers are evenly sized chunks, they all leave a runt chunk at the end, so they're not completely balanced. If you were using these functions to distribute work, you've built-in the prospect of one likely finishing well before the others, so it would sit around doing nothing while the others continued working hard.

For example, the current top answer ends with:

[60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
[70, 71, 72, 73, 74]]

I just hate that runt at the end!

Others, like list(grouper(3, xrange(7))), and chunk(xrange(7), 3) both return: [(0, 1, 2), (3, 4, 5), (6, None, None)]. The None's are just padding, and rather inelegant in my opinion. They are NOT evenly chunking the iterables.

Why can't we divide these better?

My Solution(s)

Here's a balanced solution, adapted from a function I've used in production (Note in Python 3 to replace xrange with range):

def baskets_from(items, maxbaskets=25):
    baskets = [[] for _ in xrange(maxbaskets)] # in Python 3 use range
    for i, item in enumerate(items):
        baskets[i % maxbaskets].append(item)
    return filter(None, baskets) 

And I created a generator that does the same if you put it into a list:

def iter_baskets_from(items, maxbaskets=3):
    '''generates evenly balanced baskets from indexable iterable'''
    item_count = len(items)
    baskets = min(item_count, maxbaskets)
    for x_i in xrange(baskets):
        yield [items[y_i] for y_i in xrange(x_i, item_count, baskets)]

And finally, since I see that all of the above functions return elements in a contiguous order (as they were given):

def iter_baskets_contiguous(items, maxbaskets=3, item_count=None):
    '''
    generates balanced baskets from iterable, contiguous contents
    provide item_count if providing a iterator that doesn't support len()
    '''
    item_count = item_count or len(items)
    baskets = min(item_count, maxbaskets)
    items = iter(items)
    floor = item_count // baskets 
    ceiling = floor + 1
    stepdown = item_count % baskets
    for x_i in xrange(baskets):
        length = ceiling if x_i < stepdown else floor
        yield [items.next() for _ in xrange(length)]

Output

To test them out:

print(baskets_from(xrange(6), 8))
print(list(iter_baskets_from(xrange(6), 8)))
print(list(iter_baskets_contiguous(xrange(6), 8)))
print(baskets_from(xrange(22), 8))
print(list(iter_baskets_from(xrange(22), 8)))
print(list(iter_baskets_contiguous(xrange(22), 8)))
print(baskets_from('ABCDEFG', 3))
print(list(iter_baskets_from('ABCDEFG', 3)))
print(list(iter_baskets_contiguous('ABCDEFG', 3)))
print(baskets_from(xrange(26), 5))
print(list(iter_baskets_from(xrange(26), 5)))
print(list(iter_baskets_contiguous(xrange(26), 5)))

Which prints out:

[[0], [1], [2], [3], [4], [5]]
[[0], [1], [2], [3], [4], [5]]
[[0], [1], [2], [3], [4], [5]]
[[0, 8, 16], [1, 9, 17], [2, 10, 18], [3, 11, 19], [4, 12, 20], [5, 13, 21], [6, 14], [7, 15]]
[[0, 8, 16], [1, 9, 17], [2, 10, 18], [3, 11, 19], [4, 12, 20], [5, 13, 21], [6, 14], [7, 15]]
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11], [12, 13, 14], [15, 16, 17], [18, 19], [20, 21]]
[['A', 'D', 'G'], ['B', 'E'], ['C', 'F']]
[['A', 'D', 'G'], ['B', 'E'], ['C', 'F']]
[['A', 'B', 'C'], ['D', 'E'], ['F', 'G']]
[[0, 5, 10, 15, 20, 25], [1, 6, 11, 16, 21], [2, 7, 12, 17, 22], [3, 8, 13, 18, 23], [4, 9, 14, 19, 24]]
[[0, 5, 10, 15, 20, 25], [1, 6, 11, 16, 21], [2, 7, 12, 17, 22], [3, 8, 13, 18, 23], [4, 9, 14, 19, 24]]
[[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25]]

Notice that the contiguous generator provide chunks in the same length patterns as the other two, but the items are all in order, and they are as evenly divided as one may divide a list of discrete elements.

I have a list of arbitrary length, and I need to split it up into equal size chunks and operate on it. There are some obvious ways to do this, like keeping a counter and two lists, and when the second list fills up, add it to the first list and empty the second list for the next round of data, but this is potentially extremely expensive.

I was wondering if anyone had a good solution to this for lists of any length, e.g. using generators.

I was looking for something useful in itertools but I couldn't find anything obviously useful. Might've missed it, though.

Related question: What is the most “pythonic” way to iterate over a list in chunks?


A generator expression:

def chunks(seq, n):
    return (seq[i:i+n] for i in xrange(0, len(seq), n))

eg.

print list(chunks(range(1, 1000), 10))

At this point, I think we need a recursive generator, just in case...

In python 2:

def chunks(li, n):
    if li == []:
        return
    yield li[:n]
    for e in chunks(li[n:], n):
        yield e

In python 3:

def chunks(li, n):
    if li == []:
        return
    yield li[:n]
    yield from chunks(li[n:], n)

Also, in case of massive Alien invasion, a decorated recursive generator might become handy:

def dec(gen):
    def new_gen(li, n):
        for e in gen(li, n):
            if e == []:
                return
            yield e
    return new_gen

@dec
def chunks(li, n):
    yield li[:n]
    for e in chunks(li[n:], n):
        yield e

At this point, I think we need the obligatory anonymous-recursive function.

Y = lambda f: (lambda x: x(x))(lambda y: f(lambda *args: y(y)(*args)))
chunks = Y(lambda f: lambda n: [n[0][:n[1]]] + f((n[0][n[1]:], n[1])) if len(n[0]) > 0 else [])

Directly from the (old) Python documentation (recipes for itertools):

from itertools import izip, chain, repeat

def grouper(n, iterable, padvalue=None):
    "grouper(3, 'abcdefg', 'x') --> ('a','b','c'), ('d','e','f'), ('g','x','x')"
    return izip(*[chain(iterable, repeat(padvalue, n-1))]*n)

The current version, as suggested by J.F.Sebastian:

#from itertools import izip_longest as zip_longest # for Python 2.x
from itertools import zip_longest # for Python 3.x
#from six.moves import zip_longest # for both (uses the six compat library)

def grouper(n, iterable, padvalue=None):
    "grouper(3, 'abcdefg', 'x') --> ('a','b','c'), ('d','e','f'), ('g','x','x')"
    return zip_longest(*[iter(iterable)]*n, fillvalue=padvalue)

I guess Guido's time machine works—worked—will work—will have worked—was working again.

These solutions work because [iter(iterable)]*n (or the equivalent in the earlier version) creates one iterator, repeated n times in the list. izip_longest then effectively performs a round-robin of "each" iterator; because this is the same iterator, it is advanced by each such call, resulting in each such zip-roundrobin generating one tuple of n items.


Here is a generator that work on arbitrary iterables:

def split_seq(iterable, size):
    it = iter(iterable)
    item = list(itertools.islice(it, size))
    while item:
        yield item
        item = list(itertools.islice(it, size))

Example:

>>> import pprint
>>> pprint.pprint(list(split_seq(xrange(75), 10)))
[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
 [10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
 [20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
 [30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
 [40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
 [50, 51, 52, 53, 54, 55, 56, 57, 58, 59],
 [60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
 [70, 71, 72, 73, 74]]

I know this is kind of old but I don't why nobody mentioned numpy.array_split:

lst = range(50)
In [26]: np.array_split(lst,5)
Out[26]: 
[array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
 array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19]),
 array([20, 21, 22, 23, 24, 25, 26, 27, 28, 29]),
 array([30, 31, 32, 33, 34, 35, 36, 37, 38, 39]),
 array([40, 41, 42, 43, 44, 45, 46, 47, 48, 49])]

I like the Python doc's version proposed by tzot and J.F.Sebastian a lot, but it has two shortcomings:

  • it is not very explicit
  • I usually don't want a fill value in the last chunk

I'm using this one a lot in my code:

from itertools import islice

def chunks(n, iterable):
    iterable = iter(iterable)
    while True:
        yield tuple(islice(iterable, n)) or iterable.next()

UPDATE: A lazy chunks version:

from itertools import chain, islice

def chunks(n, iterable):
   iterable = iter(iterable)
   while True:
       yield chain([next(iterable)], islice(iterable, n-1))

I saw the most awesome Python-ish answer in a duplicate of this question:

from itertools import zip_longest

a = range(1, 16)
i = iter(a)
r = list(zip_longest(i, i, i))
>>> print(r)
[(1, 2, 3), (4, 5, 6), (7, 8, 9), (10, 11, 12), (13, 14, 15)]

You can create n-tuple for any n. If a = range(1, 15), then the result will be:

[(1, 2, 3), (4, 5, 6), (7, 8, 9), (10, 11, 12), (13, 14, None)]

If the list is divided evenly, then you can replace zip_longest with zip, otherwise the triplet (13, 14, None) would be lost. Python 3 is used above. For Python 2, use izip_longest.


I was curious about the performance of different approaches and here it is:

Tested on Python 3.5.1

import time
batch_size = 7
arr_len = 298937

#---------slice-------------

print("\r\nslice")
start = time.time()
arr = [i for i in range(0, arr_len)]
while True:
    if not arr:
        break

    tmp = arr[0:batch_size]
    arr = arr[batch_size:-1]
print(time.time() - start)

#-----------index-----------

print("\r\nindex")
arr = [i for i in range(0, arr_len)]
start = time.time()
for i in range(0, round(len(arr) / batch_size + 1)):
    tmp = arr[batch_size * i : batch_size * (i + 1)]
print(time.time() - start)

#----------batches 1------------

def batch(iterable, n=1):
    l = len(iterable)
    for ndx in range(0, l, n):
        yield iterable[ndx:min(ndx + n, l)]

print("\r\nbatches 1")
arr = [i for i in range(0, arr_len)]
start = time.time()
for x in batch(arr, batch_size):
    tmp = x
print(time.time() - start)

#----------batches 2------------

from itertools import islice, chain

def batch(iterable, size):
    sourceiter = iter(iterable)
    while True:
        batchiter = islice(sourceiter, size)
        yield chain([next(batchiter)], batchiter)


print("\r\nbatches 2")
arr = [i for i in range(0, arr_len)]
start = time.time()
for x in batch(arr, batch_size):
    tmp = x
print(time.time() - start)

#---------chunks-------------
def chunks(l, n):
    """Yield successive n-sized chunks from l."""
    for i in range(0, len(l), n):
        yield l[i:i + n]
print("\r\nchunks")
arr = [i for i in range(0, arr_len)]
start = time.time()
for x in chunks(arr, batch_size):
    tmp = x
print(time.time() - start)

#-----------grouper-----------

from itertools import zip_longest # for Python 3.x
#from six.moves import zip_longest # for both (uses the six compat library)

def grouper(iterable, n, padvalue=None):
    "grouper(3, 'abcdefg', 'x') --> ('a','b','c'), ('d','e','f'), ('g','x','x')"
    return zip_longest(*[iter(iterable)]*n, fillvalue=padvalue)

arr = [i for i in range(0, arr_len)]
print("\r\ngrouper")
start = time.time()
for x in grouper(arr, batch_size):
    tmp = x
print(time.time() - start)

Results:

slice
31.18285083770752

index
0.02184295654296875

batches 1
0.03503894805908203

batches 2
0.22681021690368652

chunks
0.019841909408569336

grouper
0.006506919860839844


If you know list size:

def SplitList(list, chunk_size):
    return [list[offs:offs+chunk_size] for offs in range(0, len(list), chunk_size)]

If you don't (an iterator):

def IterChunks(sequence, chunk_size):
    res = []
    for item in sequence:
        res.append(item)
        if len(res) >= chunk_size:
            yield res
            res = []
    if res:
        yield res  # yield the last, incomplete, portion

In the latter case, it can be rephrased in a more beautiful way if you can be sure that the sequence always contains a whole number of chunks of given size (i.e. there is no incomplete last chunk).


One more solution

def make_chunks(data, chunk_size): 
    while data:
        chunk, data = data[:chunk_size], data[chunk_size:]
        yield chunk

>>> for chunk in make_chunks([1, 2, 3, 4, 5, 6, 7], 2):
...     print chunk
... 
[1, 2]
[3, 4]
[5, 6]
[7]
>>> 

Simple yet elegant

l = range(1, 1000)
print [l[x:x+10] for x in xrange(0, len(l), 10)]

or if you prefer:

chunks = lambda l, n: [l[x: x+n] for x in xrange(0, len(l), n)]
chunks(l, 10)

Without calling len() which is good for large lists:

def splitter(l, n):
    i = 0
    chunk = l[:n]
    while chunk:
        yield chunk
        i += n
        chunk = l[i:i+n]

And this is for iterables:

def isplitter(l, n):
    l = iter(l)
    chunk = list(islice(l, n))
    while chunk:
        yield chunk
        chunk = list(islice(l, n))

The functional flavour of the above:

def isplitter2(l, n):
    return takewhile(bool,
                     (tuple(islice(start, n))
                            for start in repeat(iter(l))))

OR:

def chunks_gen_sentinel(n, seq):
    continuous_slices = imap(islice, repeat(iter(seq)), repeat(0), repeat(n))
    return iter(imap(tuple, continuous_slices).next,())

OR:

def chunks_gen_filter(n, seq):
    continuous_slices = imap(islice, repeat(iter(seq)), repeat(0), repeat(n))
    return takewhile(bool,imap(tuple, continuous_slices))

You may also use get_chunks function of utilspie library as:

>>> from utilspie import iterutils
>>> a = [1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> list(iterutils.get_chunks(a, 5))
[[1, 2, 3, 4, 5], [6, 7, 8, 9]]

You can install utilspie via pip:

sudo pip install utilspie

Disclaimer: I am the creator of utilspie library.


heh, one line version

In [48]: chunk = lambda ulist, step:  map(lambda i: ulist[i:i+step],  xrange(0, len(ulist), step))

In [49]: chunk(range(1,100), 10)
Out[49]: 
[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
 [11, 12, 13, 14, 15, 16, 17, 18, 19, 20],
 [21, 22, 23, 24, 25, 26, 27, 28, 29, 30],
 [31, 32, 33, 34, 35, 36, 37, 38, 39, 40],
 [41, 42, 43, 44, 45, 46, 47, 48, 49, 50],
 [51, 52, 53, 54, 55, 56, 57, 58, 59, 60],
 [61, 62, 63, 64, 65, 66, 67, 68, 69, 70],
 [71, 72, 73, 74, 75, 76, 77, 78, 79, 80],
 [81, 82, 83, 84, 85, 86, 87, 88, 89, 90],
 [91, 92, 93, 94, 95, 96, 97, 98, 99]]

[AA[i:i+SS] for i in range(len(AA))[::SS]]

Where AA is array, SS is chunk size. For example:

>>> AA=range(10,21);SS=3
>>> [AA[i:i+SS] for i in range(len(AA))[::SS]]
[[10, 11, 12], [13, 14, 15], [16, 17, 18], [19, 20]]
# or [range(10, 13), range(13, 16), range(16, 19), range(19, 21)] in py3

def chunk(input, size):
    return map(None, *([iter(input)] * size))

def chunks(iterable,n):
    """assumes n is an integer>0
    """
    iterable=iter(iterable)
    while True:
        result=[]
        for i in range(n):
            try:
                a=next(iterable)
            except StopIteration:
                break
            else:
                result.append(a)
        if result:
            yield result
        else:
            break

g1=(i*i for i in range(10))
g2=chunks(g1,3)
print g2
'<generator object chunks at 0x0337B9B8>'
print list(g2)
'[[0, 1, 4], [9, 16, 25], [36, 49, 64], [81]]'




chunks