years - how to calculate age in c# console application




How do I calculate someone's age in C#? (20)

2 Main problems to solve are:

1. Calculate Exact age - in years, months, days, etc.

2. Calculate Generally perceived age - people usually do not care how old they exactly are, they just care when their birthday in the current year is.

Solution for 1 is obvious:

DateTime birth = DateTime.Parse("1.1.2000");
DateTime today = DateTime.Today;     //we usually don't care about birth time
TimeSpan age = today - birth;        //.NET FCL should guarantee this as precise
double ageInDays = age.TotalDays;    //total number of days ... also precise
double daysInYear = 365.2425;        //statistical value for 400 years
double ageInYears = ageInDays / daysInYear;  //can be shifted ... not so precise

Solution for 2 is the one which is not so precise in determing total age, but is perceived as precise by people. People also usually use it, when they calculate their age "manually":

DateTime birth = DateTime.Parse("1.1.2000");
DateTime today = DateTime.Today;
int age = today.Year - birth.Year;    //people perceive their age in years

if (today.Month < birth.Month ||
   ((today.Month == birth.Month) && (today.Day < birth.Day)))
{
  age--;  //birthday in current year not yet reached, we are 1 year younger ;)
          //+ no birthday for 29.2. guys ... sorry, just wrong date for birth
}

Notes to 2.:

  • This is my preferred solution
  • We cannot use DateTime.DayOfYear or TimeSpans, as they shift number of days in leap years
  • I have put there little more lines for readability

Just one more note ... I would create 2 static overloaded methods for it, one for universal usage, second for usage-friendliness:

public static int GetAge(DateTime bithDay, DateTime today) 
{ 
  //chosen solution method body
}

public static int GetAge(DateTime birthDay) 
{ 
  return GetAge(birthDay, DateTime.Now);
}

Given a DateTime representing a person's birthday, how do I calculate their age in years?


An easy to understand and simple solution.

// Save today's date.
var today = DateTime.Today;
// Calculate the age.
var age = today.Year - birthdate.Year;
// Go back to the year the person was born in case of a leap year
if (birthdate.Date > today.AddYears(-age)) age--;

However, this assumes you are looking for the western idea of age and not using East Asian reckoning .


Do we need to consider people who is smaller than 1 year? as Chinese culture, we describe small babies' age as 2 months or 4 weeks.

Below is my implementation, it is not as simple as what I imagined, especially to deal with date like 2/28.

public static string HowOld(DateTime birthday, DateTime now)
{
    if (now < birthday)
        throw new ArgumentOutOfRangeException("birthday must be less than now.");

    TimeSpan diff = now - birthday;
    int diffDays = (int)diff.TotalDays;

    if (diffDays > 7)//year, month and week
    {
        int age = now.Year - birthday.Year;

        if (birthday > now.AddYears(-age))
            age--;

        if (age > 0)
        {
            return age + (age > 1 ? " years" : " year");
        }
        else
        {// month and week
            DateTime d = birthday;
            int diffMonth = 1;

            while (d.AddMonths(diffMonth) <= now)
            {
                diffMonth++;
            }

            age = diffMonth-1;

            if (age == 1 && d.Day > now.Day)
                age--;

            if (age > 0)
            {
                return age + (age > 1 ? " months" : " month");
            }
            else
            {
                age = diffDays / 7;
                return age + (age > 1 ? " weeks" : " week");
            }
        }
    }
    else if (diffDays > 0)
    {
        int age = diffDays;
        return age + (age > 1 ? " days" : " day");
    }
    else
    {
        int age = diffDays;
        return "just born";
    }
}

This implementation has passed below test cases.

[TestMethod]
public void TestAge()
{
    string age = HowOld(new DateTime(2011, 1, 1), new DateTime(2012, 11, 30));
    Assert.AreEqual("1 year", age);

    age = HowOld(new DateTime(2011, 11, 30), new DateTime(2012, 11, 30));
    Assert.AreEqual("1 year", age);

    age = HowOld(new DateTime(2001, 1, 1), new DateTime(2012, 11, 30));
    Assert.AreEqual("11 years", age);

    age = HowOld(new DateTime(2012, 1, 1), new DateTime(2012, 11, 30));
    Assert.AreEqual("10 months", age);

    age = HowOld(new DateTime(2011, 12, 1), new DateTime(2012, 11, 30));
    Assert.AreEqual("11 months", age);

    age = HowOld(new DateTime(2012, 10, 1), new DateTime(2012, 11, 30));
    Assert.AreEqual("1 month", age);

    age = HowOld(new DateTime(2008, 2, 28), new DateTime(2009, 2, 28));
    Assert.AreEqual("1 year", age);

    age = HowOld(new DateTime(2008, 3, 28), new DateTime(2009, 2, 28));
    Assert.AreEqual("11 months", age);

    age = HowOld(new DateTime(2008, 3, 28), new DateTime(2009, 3, 28));
    Assert.AreEqual("1 year", age);

    age = HowOld(new DateTime(2009, 1, 28), new DateTime(2009, 2, 28));
    Assert.AreEqual("1 month", age);

    age = HowOld(new DateTime(2009, 2, 1), new DateTime(2009, 3, 1));
    Assert.AreEqual("1 month", age);

    // NOTE.
    // new DateTime(2008, 1, 31).AddMonths(1) == new DateTime(2009, 2, 28);
    // new DateTime(2008, 1, 28).AddMonths(1) == new DateTime(2009, 2, 28);
    age = HowOld(new DateTime(2009, 1, 31), new DateTime(2009, 2, 28));
    Assert.AreEqual("4 weeks", age);

    age = HowOld(new DateTime(2009, 2, 1), new DateTime(2009, 2, 28));
    Assert.AreEqual("3 weeks", age);

    age = HowOld(new DateTime(2009, 2, 1), new DateTime(2009, 3, 1));
    Assert.AreEqual("1 month", age);

    age = HowOld(new DateTime(2012, 11, 5), new DateTime(2012, 11, 30));
    Assert.AreEqual("3 weeks", age);

    age = HowOld(new DateTime(2012, 11, 1), new DateTime(2012, 11, 30));
    Assert.AreEqual("4 weeks", age);

    age = HowOld(new DateTime(2012, 11, 20), new DateTime(2012, 11, 30));
    Assert.AreEqual("1 week", age);

    age = HowOld(new DateTime(2012, 11, 25), new DateTime(2012, 11, 30));
    Assert.AreEqual("5 days", age);

    age = HowOld(new DateTime(2012, 11, 29), new DateTime(2012, 11, 30));
    Assert.AreEqual("1 day", age);

    age = HowOld(new DateTime(2012, 11, 30), new DateTime(2012, 11, 30));
    Assert.AreEqual("just born", age);

    age = HowOld(new DateTime(2000, 2, 29), new DateTime(2009, 2, 28));
    Assert.AreEqual("8 years", age);

    age = HowOld(new DateTime(2000, 2, 29), new DateTime(2009, 3, 1));
    Assert.AreEqual("9 years", age);

    Exception e = null;

    try
    {
        age = HowOld(new DateTime(2012, 12, 1), new DateTime(2012, 11, 30));
    }
    catch (ArgumentOutOfRangeException ex)
    {
        e = ex;
    }

    Assert.IsTrue(e != null);
}

Hope it's helpful.


Here is a solution.

DateTime dateOfBirth = new DateTime(2000, 4, 18);
DateTime currentDate = DateTime.Now;

int ageInYears = 0;
int ageInMonths = 0;
int ageInDays = 0;

ageInDays = currentDate.Day - dateOfBirth.Day;
ageInMonths = currentDate.Month - dateOfBirth.Month;
ageInYears = currentDate.Year - dateOfBirth.Year;

if (ageInDays < 0)
{
    ageInDays += DateTime.DaysInMonth(currentDate.Year, currentDate.Month);
    ageInMonths = ageInMonths--;

    if (ageInMonths < 0)
    {
        ageInMonths += 12;
        ageInYears--;
    }
}

if (ageInMonths < 0)
{
    ageInMonths += 12;
    ageInYears--;
}

Console.WriteLine("{0}, {1}, {2}", ageInYears, ageInMonths, ageInDays);

How about this solution?

static string CalcAge(DateTime birthDay)
{
    DateTime currentDate = DateTime.Now;         
    int approximateAge = currentDate.Year - birthDay.Year;
    int daysToNextBirthDay = (birthDay.Month * 30 + birthDay.Day) - 
        (currentDate.Month * 30 + currentDate.Day) ;

    if (approximateAge == 0 || approximateAge == 1)
    {                
        int month =  Math.Abs(daysToNextBirthDay / 30);
        int days = Math.Abs(daysToNextBirthDay % 30);

        if (month == 0)
            return "Your age is: " + daysToNextBirthDay + " days";

        return "Your age is: " + month + " months and " + days + " days"; ;
    }

    if (daysToNextBirthDay > 0)
        return "Your age is: " + --approximateAge + " Years";

    return "Your age is: " + approximateAge + " Years"; ;
}

I am late to the party, but here's a one-liner:

int age = new DateTime(DateTime.Now.Subtract(birthday).Ticks).Year-1;

I don't think any of the answers so far provide for cultures that calculate age differently. See, for example, East Asian Age Reckoning versus that in the West.

Any real answer has to include localization. The Strategy Pattern would probably be in order in this example.


I have a customized method to calculate age, plus a bonus validation message just in case it helps:

public void GetAge(DateTime dob, DateTime now, out int years, out int months, out int days)
{
    years = 0;
    months = 0;
    days = 0;

    DateTime tmpdob = new DateTime(dob.Year, dob.Month, 1);
    DateTime tmpnow = new DateTime(now.Year, now.Month, 1);

    while (tmpdob.AddYears(years).AddMonths(months) < tmpnow)
    {
        months++;
        if (months > 12)
        {
            years++;
            months = months - 12;
        }
    }

    if (now.Day >= dob.Day)
        days = days + now.Day - dob.Day;
    else
    {
        months--;
        if (months < 0)
        {
            years--;
            months = months + 12;
        }
        days += DateTime.DaysInMonth(now.AddMonths(-1).Year, now.AddMonths(-1).Month) + now.Day - dob.Day;
    }

    if (DateTime.IsLeapYear(dob.Year) && dob.Month == 2 && dob.Day == 29 && now >= new DateTime(now.Year, 3, 1))
        days++;

}   

private string ValidateDate(DateTime dob) //This method will validate the date
{
    int Years = 0; int Months = 0; int Days = 0;

    GetAge(dob, DateTime.Now, out Years, out Months, out Days);

    if (Years < 18)
        message =  Years + " is too young. Please try again on your 18th birthday.";
    else if (Years >= 65)
        message = Years + " is too old. Date of Birth must not be 65 or older.";
    else
        return null; //Denotes validation passed
}

Method call here and pass out datetime value (MM/dd/yyyy if server set to USA locale). Replace this with anything a messagebox or any container to display:

DateTime dob = DateTime.Parse("03/10/1982");  

string message = ValidateDate(dob);

lbldatemessage.Visible = !StringIsNullOrWhitespace(message);
lbldatemessage.Text = message ?? ""; //Ternary if message is null then default to empty string

Remember you can format the message any way you like.


I use this:

public static class DateTimeExtensions
{
    public static int Age(this DateTime birthDate)
    {
        return Age(birthDate, DateTime.Now);
    }

    public static int Age(this DateTime birthDate, DateTime offsetDate)
    {
        int result=0;
        result = offsetDate.Year - birthDate.Year;

        if (offsetDate.DayOfYear < birthDate.DayOfYear)
        {
              result--;
        }

        return result;
    }
}

I used ScArcher2's solution for an accurate Year calculation of a persons age but I needed to take it further and calculate their Months and Days along with the Years.

    public static Dictionary<string,int> CurrentAgeInYearsMonthsDays(DateTime? ndtBirthDate, DateTime? ndtReferralDate)
    {
        //----------------------------------------------------------------------
        // Can't determine age if we don't have a dates.
        //----------------------------------------------------------------------
        if (ndtBirthDate == null) return null;
        if (ndtReferralDate == null) return null;

        DateTime dtBirthDate = Convert.ToDateTime(ndtBirthDate);
        DateTime dtReferralDate = Convert.ToDateTime(ndtReferralDate);

        //----------------------------------------------------------------------
        // Create our Variables
        //----------------------------------------------------------------------
        Dictionary<string, int> dYMD = new Dictionary<string,int>();
        int iNowDate, iBirthDate, iYears, iMonths, iDays;
        string sDif = "";

        //----------------------------------------------------------------------
        // Store off current date/time and DOB into local variables
        //---------------------------------------------------------------------- 
        iNowDate = int.Parse(dtReferralDate.ToString("yyyyMMdd"));
        iBirthDate = int.Parse(dtBirthDate.ToString("yyyyMMdd"));

        //----------------------------------------------------------------------
        // Calculate Years
        //----------------------------------------------------------------------
        sDif = (iNowDate - iBirthDate).ToString();
        iYears = int.Parse(sDif.Substring(0, sDif.Length - 4));

        //----------------------------------------------------------------------
        // Store Years in Return Value
        //----------------------------------------------------------------------
        dYMD.Add("Years", iYears);

        //----------------------------------------------------------------------
        // Calculate Months
        //----------------------------------------------------------------------
        if (dtBirthDate.Month > dtReferralDate.Month)
            iMonths = 12 - dtBirthDate.Month + dtReferralDate.Month - 1;
        else
            iMonths = dtBirthDate.Month - dtReferralDate.Month;

        //----------------------------------------------------------------------
        // Store Months in Return Value
        //----------------------------------------------------------------------
        dYMD.Add("Months", iMonths);

        //----------------------------------------------------------------------
        // Calculate Remaining Days
        //----------------------------------------------------------------------
        if (dtBirthDate.Day > dtReferralDate.Day)
            //Logic: Figure out the days in month previous to the current month, or the admitted month.
            //       Subtract the birthday from the total days which will give us how many days the person has lived since their birthdate day the previous month.
            //       then take the referral date and simply add the number of days the person has lived this month.

            //If referral date is january, we need to go back to the following year's December to get the days in that month.
            if (dtReferralDate.Month == 1)
                iDays = DateTime.DaysInMonth(dtReferralDate.Year - 1, 12) - dtBirthDate.Day + dtReferralDate.Day;       
            else
                iDays = DateTime.DaysInMonth(dtReferralDate.Year, dtReferralDate.Month - 1) - dtBirthDate.Day + dtReferralDate.Day;       
        else
            iDays = dtReferralDate.Day - dtBirthDate.Day;             

        //----------------------------------------------------------------------
        // Store Days in Return Value
        //----------------------------------------------------------------------
        dYMD.Add("Days", iDays);

        return dYMD;
}

Keeping it simple (and possibly stupid:)).

DateTime birth = new DateTime(1975, 09, 27, 01, 00, 00, 00);
TimeSpan ts = DateTime.Now - birth;
Console.WriteLine("You are approximately " + ts.TotalSeconds.ToString() + " seconds old.");

My suggestion

int age = (int) ((DateTime.Now - bday).TotalDays/365.242199);

That seems to have the year changing on the right date. (I spot tested up to age 107)


The best way that I know of because of leap years and everything is:

DateTime birthDate = new DateTime(2000,3,1);
int age = (int)Math.Floor((DateTime.Now - birthDate).TotalDays / 365.25D);

Hope this helps.


The following approach (extract from Time Period Library for .NET class DateDiff ) considers the calendar of the culture info:

// ----------------------------------------------------------------------
private static int YearDiff( DateTime date1, DateTime date2 )
{
  return YearDiff( date1, date2, DateTimeFormatInfo.CurrentInfo.Calendar );
} // YearDiff

// ----------------------------------------------------------------------
private static int YearDiff( DateTime date1, DateTime date2, Calendar calendar )
{
  if ( date1.Equals( date2 ) )
  {
    return 0;
  }

  int year1 = calendar.GetYear( date1 );
  int month1 = calendar.GetMonth( date1 );
  int year2 = calendar.GetYear( date2 );
  int month2 = calendar.GetMonth( date2 );

  // find the the day to compare
  int compareDay = date2.Day;
  int compareDaysPerMonth = calendar.GetDaysInMonth( year1, month1 );
  if ( compareDay > compareDaysPerMonth )
  {
    compareDay = compareDaysPerMonth;
  }

  // build the compare date
  DateTime compareDate = new DateTime( year1, month2, compareDay,
    date2.Hour, date2.Minute, date2.Second, date2.Millisecond );
  if ( date2 > date1 )
  {
    if ( compareDate < date1 )
    {
      compareDate = compareDate.AddYears( 1 );
    }
  }
  else
  {
    if ( compareDate > date1 )
    {
      compareDate = compareDate.AddYears( -1 );
    }
  }
  return year2 - calendar.GetYear( compareDate );
} // YearDiff

Usage:

// ----------------------------------------------------------------------
public void CalculateAgeSamples()
{
  PrintAge( new DateTime( 2000, 02, 29 ), new DateTime( 2009, 02, 28 ) );
  // > Birthdate=29.02.2000, Age at 28.02.2009 is 8 years
  PrintAge( new DateTime( 2000, 02, 29 ), new DateTime( 2012, 02, 28 ) );
  // > Birthdate=29.02.2000, Age at 28.02.2012 is 11 years
} // CalculateAgeSamples

// ----------------------------------------------------------------------
public void PrintAge( DateTime birthDate, DateTime moment )
{
  Console.WriteLine( "Birthdate={0:d}, Age at {1:d} is {2} years", birthDate, moment, YearDiff( birthDate, moment ) );
} // PrintAge

The simplest way I've ever found is this. It works correctly for the US and western europe locales. Can't speak to other locales, especially places like China. 4 extra compares, at most, following the initial computation of age.

public int AgeInYears(DateTime birthDate, DateTime referenceDate)
{
  Debug.Assert(referenceDate >= birthDate, 
               "birth date must be on or prior to the reference date");

  DateTime birth = birthDate.Date;
  DateTime reference = referenceDate.Date;
  int years = (reference.Year - birth.Year);

  //
  // an offset of -1 is applied if the birth date has 
  // not yet occurred in the current year.
  //
  if (reference.Month > birth.Month);
  else if (reference.Month < birth.Month) 
    --years;
  else // in birth month
  {
    if (reference.Day < birth.Day)
      --years;
  }

  return years ;
}

I was looking over the answers to this and noticed that nobody has made reference to regulatory/legal implications of leap day births. For instance, per Wikipedia , if you're born on February 29th in various jurisdictions, you're non-leap year birthday varies:

  • In the United Kingdom and Hong Kong: it's the ordinal day of the year, so the next day, March 1st is your birthday.
  • In New Zealand: it's the previous day, February 28th for the purposes of driver licencing, and March 1st for other purposes.
  • Taiwan: it's February 28th.

And as near as I can tell, in the US, the statutes are silent on the matter, leaving it up to the common law and to how various regulatory bodies define things in their regulations.

To that end, an improvement:

public enum LeapDayRule
{
  OrdinalDay     = 1 ,
  LastDayOfMonth = 2 ,
}

static int ComputeAgeInYears(DateTime birth, DateTime reference, LeapYearBirthdayRule ruleInEffect)
{
  bool isLeapYearBirthday = CultureInfo.CurrentCulture.Calendar.IsLeapDay(birth.Year, birth.Month, birth.Day);
  DateTime cutoff;

  if (isLeapYearBirthday && !DateTime.IsLeapYear(reference.Year))
  {
    switch (ruleInEffect)
    {
      case LeapDayRule.OrdinalDay:
        cutoff = new DateTime(reference.Year, 1, 1)
                             .AddDays(birth.DayOfYear - 1);
        break;

      case LeapDayRule.LastDayOfMonth:
        cutoff = new DateTime(reference.Year, birth.Month, 1)
                             .AddMonths(1)
                             .AddDays(-1);
        break;

      default:
        throw new InvalidOperationException();
    }
  }
  else
  {
    cutoff = new DateTime(reference.Year, birth.Month, birth.Day);
  }

  int age = (reference.Year - birth.Year) + (reference >= cutoff ? 0 : -1);
  return age < 0 ? 0 : age;
}

It should be noted that this code assumes:

  • A western (European) reckoning of age, and
  • A calendar, like the Gregorian calendar that inserts a single leap day at the end of a month.

This classic question is deserving of a Noda Time solution.

static int GetAge(LocalDate dateOfBirth)
{
    Instant now = SystemClock.Instance.Now;

    // The target time zone is important.
    // It should align with the *current physical location* of the person
    // you are talking about.  When the whereabouts of that person are unknown,
    // then you use the time zone of the person who is *asking* for the age.
    // The time zone of birth is irrelevant!

    DateTimeZone zone = DateTimeZoneProviders.Tzdb["America/New_York"];

    LocalDate today = now.InZone(zone).Date;

    Period period = Period.Between(dateOfBirth, today, PeriodUnits.Years);

    return (int) period.Years;
}

Usage:

LocalDate dateOfBirth = new LocalDate(1976, 8, 27);
int age = GetAge(dateOfBirth);

You might also be interested in the following improvements:

  • Passing in the clock as an IClock , instead of using SystemClock.Instance , would improve testability.

  • The target time zone will likely change, so you'd want a DateTimeZone parameter as well.

See also my blog post on this subject: Handling Birthdays, and Other Anniversaries


This is a strange way to do it, but if you format the date to yyyymmdd and subtract the date of birth from the current date then drop the last 4 digits you've got the age :)

I don't know C#, but I believe this will work in any language.

20080814 - 19800703 = 280111 

Drop the last 4 digits = 28 .

C# Code:

int now = int.Parse(DateTime.Now.ToString("yyyyMMdd"));
int dob = int.Parse(dateOfBirth.ToString("yyyyMMdd"));
int age = (now - dob) / 10000;

Or alternatively without all the type conversion in the form of an extension method. Error checking omitted:

public static Int32 GetAge(this DateTime dateOfBirth)
{
    var today = DateTime.Today;

    var a = (today.Year * 100 + today.Month) * 100 + today.Day;
    var b = (dateOfBirth.Year * 100 + dateOfBirth.Month) * 100 + dateOfBirth.Day;

    return (a - b) / 10000;
}

This is not a direct answer, but more of a philosophical reasoning about the problem at hand from a quasi-scientific point of view.

I would argue that the question does not specify the unit nor culture in which to measure age, most answers seem to assume an integer annual representation. The SI-unit for time is second , ergo the correct generic answer should be (of course assuming normalized DateTime and taking no regard whatsoever to relativistic effects):

var lifeInSeconds = (DateTime.Now.Ticks - then.Ticks)/TickFactor;

In the Christian way of calculating age in years:

var then = ... // Then, in this case the birthday
var now = DateTime.UtcNow;
int age = now.Year - then.Year;
if (now.AddYears(-age) < then) age--;

In finance there is a similar problem when calculating something often referred to as the Day Count Fraction , which roughly is a number of years for a given period. And the age issue is really a time measuring issue.

Example for the actual/actual (counting all days "correctly") convention:

DateTime start, end = .... // Whatever, assume start is before end

double startYearContribution = 1 - (double) start.DayOfYear / (double) (DateTime.IsLeapYear(start.Year) ? 366 : 365);
double endYearContribution = (double)end.DayOfYear / (double)(DateTime.IsLeapYear(end.Year) ? 366 : 365);
double middleContribution = (double) (end.Year - start.Year - 1);

double DCF = startYearContribution + endYearContribution + middleContribution;

Another quite common way to measure time generally is by "serializing" (the dude who named this date convention must seriously have been trippin'):

DateTime start, end = .... // Whatever, assume start is before end
int days = (end - start).Days;

I wonder how long we have to go before a relativistic age in seconds becomes more useful than the rough approximation of earth-around-sun-cycles during one's lifetime so far :) Or in other words, when a period must be given a location or a function representing motion for itself to be valid :)


This is the version we use here. It works, and it's fairly simple. It's the same idea as Jeff's but I think it's a little clearer because it separates out the logic for subtracting one, so it's a little easier to understand.

public static int GetAge(this DateTime dateOfBirth, DateTime dateAsAt)
{
    return dateAsAt.Year - dateOfBirth.Year - (dateOfBirth.DayOfYear < dateAsAt.DayOfYear ? 0 : 1);
}

You could expand the ternary operator to make it even clearer, if you think that sort of thing is unclear.

Obviously this is done as an extension method on DateTime , but clearly you can grab that one line of code that does the work and put it anywhere. Here we have another overload of the Extension method that passes in DateTime.Now , just for completeness.


private int GetAge(int _year, int _month, int _day
{
    DateTime yourBirthDate= new DateTime(_year, _month, _day);

    DateTime todaysDateTime = DateTime.Today;
    int noOfYears = todaysDateTime.Year - yourBirthDate.Year;

    if (DateTime.Now.Month < yourBirthDate.Month ||
        (DateTime.Now.Month == yourBirthDate.Month && DateTime.Now.Day < yourBirthDate.Day))
    {
        noOfYears--;
    }

    return  noOfYears;
}






datetime