python - savefig - save figure matplotlib

Save plot to image file instead of displaying it using Matplotlib (10)

According to question Matplotlib (pyplot) savefig outputs blank image.

One thing should note: if you use and it should after plt.savefig, or you will give a blank image.

A detailed example:

import numpy as np
import matplotlib.pyplot as plt

def draw_result(lst_iter, lst_loss, lst_acc, title):
    plt.plot(lst_iter, lst_loss, '-b', label='loss')
    plt.plot(lst_iter, lst_acc, '-r', label='accuracy')

    plt.xlabel("n iteration")
    plt.legend(loc='upper left')
    plt.savefig(title+".png")  # should before method

def test_draw():
    lst_iter = range(100)
    lst_loss = [0.01 * i + 0.01 * i ** 2 for i in xrange(100)]
    # lst_loss = np.random.randn(1, 100).reshape((100, ))
    lst_acc = [0.01 * i - 0.01 * i ** 2 for i in xrange(100)]
    # lst_acc = np.random.randn(1, 100).reshape((100, ))
    draw_result(lst_iter, lst_loss, lst_acc, "sgd_method")

if __name__ == '__main__':

I am writing a quick-and-dirty script to generate plots on the fly. I am using the code below (from Matplotlib documentation) as a starting point:

from pylab import figure, axes, pie, title, show

# Make a square figure and axes
figure(1, figsize=(6, 6))
ax = axes([0.1, 0.1, 0.8, 0.8])

labels = 'Frogs', 'Hogs', 'Dogs', 'Logs'
fracs = [15, 30, 45, 10]

explode = (0, 0.05, 0, 0)
pie(fracs, explode=explode, labels=labels, autopct='%1.1f%%', shadow=True)
title('Raining Hogs and Dogs', bbox={'facecolor': '0.8', 'pad': 5})

show()  # Actually, don't show, just save to foo.png

I don't want to display the plot on a GUI, instead, I want to save the plot to a file (say foo.png), so that, for example, it can be used in batch scripts. How do I do that?

After using the plot() and other functions to create the content you want, you could use a clause like this to select between plotting to the screen or to file:

import matplotlib.pyplot as plt

fig = plt.figure(figuresize=4, 5)
# use plot(), etc. to create your plot.

# Pick one of the following lines to uncomment
# save_file = None
# save_file = os.path.join(your_directory, your_file_name)  

if save_file:

I used the following:

import matplotlib.pyplot as plt

p1 = plt.plot(dates, temp, 'r-', label="Temperature (celsius)")  
p2 = plt.plot(dates, psal, 'b-', label="Salinity (psu)")  
plt.legend(loc='upper center', numpoints=1, bbox_to_anchor=(0.5, -0.05),        ncol=2, fancybox=True, shadow=True)


I found very important to use after saving the figure, otherwise it won't work.figure exported in png

If you don't like the concept of the "current" figure, do:

import matplotlib.image as mpimg

img = mpimg.imread("src.png")
mpimg.imsave("out.png", img)

Just found this link on the MatPlotLib documentation addressing exactly this issue:

They say that the easiest way to prevent the figure from popping up is to use a non-interactive backend (eg. Agg), via matplotib.use(<backend>), eg:

import matplotlib
import matplotlib.pyplot as plt

I still personally prefer using plt.close( fig ), since then you have the option to hide certain figures (during a loop), but still display figures for post-loop data processing. It is probably slower than choosing a non-interactive backend though - would be interesting if someone tested that.

The Solution :

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib'ggplot')
ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
ts = ts.cumsum()
plt.savefig("foo.png", bbox_inches='tight')

If you do want to display the image as well as saving the image use:

%matplotlib inline

after import matplotlib

The solution is:


While the question has been answered, I'd like to add some useful tips when using savefig. The file format can be specified by the extension:


Will give a rasterized or vectorized output respectively, both which could be useful. In addition, you'll find that pylab leaves a generous, often undesirable, whitespace around the image. Remove it with:

savefig('foo.png', bbox_inches='tight')

#write the code for the plot     

The file will be saved in the same directory as the python/Jupyter file running

import datetime
import numpy as np
from matplotlib.backends.backend_pdf import PdfPages
import matplotlib.pyplot as plt

# Create the PdfPages object to which we will save the pages:
# The with statement makes sure that the PdfPages object is closed properly at
# the end of the block, even if an Exception occurs.
with PdfPages('multipage_pdf.pdf') as pdf:
    plt.figure(figsize=(3, 3))
    plt.plot(range(7), [3, 1, 4, 1, 5, 9, 2], 'r-o')
    plt.title('Page One')
    pdf.savefig()  # saves the current figure into a pdf page

    plt.rc('text', usetex=True)
    plt.figure(figsize=(8, 6))
    x = np.arange(0, 5, 0.1)
    plt.plot(x, np.sin(x), 'b-')
    plt.title('Page Two')

    plt.rc('text', usetex=False)
    fig = plt.figure(figsize=(4, 5))
    plt.plot(x, x*x, 'ko')
    plt.title('Page Three')
    pdf.savefig(fig)  # or you can pass a Figure object to pdf.savefig

    # We can also set the file's metadata via the PdfPages object:
    d = pdf.infodict()
    d['Title'] = 'Multipage PDF Example'
    d['Author'] = u'Jouni K. Sepp\xe4nen'
    d['Subject'] = 'How to create a multipage pdf file and set its metadata'
    d['Keywords'] = 'PdfPages multipage keywords author title subject'
    d['CreationDate'] = datetime.datetime(2009, 11, 13)
    d['ModDate'] =