python example - How do I pass a variable by reference?




12 Answers

Arguments are passed by assignment. The rationale behind this is twofold:

  1. the parameter passed in is actually a reference to an object (but the reference is passed by value)
  2. some data types are mutable, but others aren't

So:

  • If you pass a mutable object into a method, the method gets a reference to that same object and you can mutate it to your heart's delight, but if you rebind the reference in the method, the outer scope will know nothing about it, and after you're done, the outer reference will still point at the original object.

  • If you pass an immutable object to a method, you still can't rebind the outer reference, and you can't even mutate the object.

To make it even more clear, let's have some examples.

List - a mutable type

Let's try to modify the list that was passed to a method:

def try_to_change_list_contents(the_list):
    print('got', the_list)
    the_list.append('four')
    print('changed to', the_list)

outer_list = ['one', 'two', 'three']

print('before, outer_list =', outer_list)
try_to_change_list_contents(outer_list)
print('after, outer_list =', outer_list)

Output:

before, outer_list = ['one', 'two', 'three']
got ['one', 'two', 'three']
changed to ['one', 'two', 'three', 'four']
after, outer_list = ['one', 'two', 'three', 'four']

Since the parameter passed in is a reference to outer_list, not a copy of it, we can use the mutating list methods to change it and have the changes reflected in the outer scope.

Now let's see what happens when we try to change the reference that was passed in as a parameter:

def try_to_change_list_reference(the_list):
    print('got', the_list)
    the_list = ['and', 'we', 'can', 'not', 'lie']
    print('set to', the_list)

outer_list = ['we', 'like', 'proper', 'English']

print('before, outer_list =', outer_list)
try_to_change_list_reference(outer_list)
print('after, outer_list =', outer_list)

Output:

before, outer_list = ['we', 'like', 'proper', 'English']
got ['we', 'like', 'proper', 'English']
set to ['and', 'we', 'can', 'not', 'lie']
after, outer_list = ['we', 'like', 'proper', 'English']

Since the the_list parameter was passed by value, assigning a new list to it had no effect that the code outside the method could see. The the_list was a copy of the outer_list reference, and we had the_list point to a new list, but there was no way to change where outer_list pointed.

String - an immutable type

It's immutable, so there's nothing we can do to change the contents of the string

Now, let's try to change the reference

def try_to_change_string_reference(the_string):
    print('got', the_string)
    the_string = 'In a kingdom by the sea'
    print('set to', the_string)

outer_string = 'It was many and many a year ago'

print('before, outer_string =', outer_string)
try_to_change_string_reference(outer_string)
print('after, outer_string =', outer_string)

Output:

before, outer_string = It was many and many a year ago
got It was many and many a year ago
set to In a kingdom by the sea
after, outer_string = It was many and many a year ago

Again, since the the_string parameter was passed by value, assigning a new string to it had no effect that the code outside the method could see. The the_string was a copy of the outer_string reference, and we had the_string point to a new string, but there was no way to change where outer_string pointed.

I hope this clears things up a little.

EDIT: It's been noted that this doesn't answer the question that @David originally asked, "Is there something I can do to pass the variable by actual reference?". Let's work on that.

How do we get around this?

As @Andrea's answer shows, you could return the new value. This doesn't change the way things are passed in, but does let you get the information you want back out:

def return_a_whole_new_string(the_string):
    new_string = something_to_do_with_the_old_string(the_string)
    return new_string

# then you could call it like
my_string = return_a_whole_new_string(my_string)

If you really wanted to avoid using a return value, you could create a class to hold your value and pass it into the function or use an existing class, like a list:

def use_a_wrapper_to_simulate_pass_by_reference(stuff_to_change):
    new_string = something_to_do_with_the_old_string(stuff_to_change[0])
    stuff_to_change[0] = new_string

# then you could call it like
wrapper = [my_string]
use_a_wrapper_to_simulate_pass_by_reference(wrapper)

do_something_with(wrapper[0])

Although this seems a little cumbersome.

object int

The Python documentation seems unclear about whether parameters are passed by reference or value, and the following code produces the unchanged value 'Original'

class PassByReference:
    def __init__(self):
        self.variable = 'Original'
        self.change(self.variable)
        print(self.variable)

    def change(self, var):
        var = 'Changed'

Is there something I can do to pass the variable by actual reference?




I found the other answers rather long and complicated, so I created this simple diagram to explain the way Python treats variables and parameters.




Think of stuff being passed by assignment instead of by reference/by value. That way, it is allways clear, what is happening as long as you understand what happens during normal assignment.

So, when passing a list to a function/method, the list is assigned to the parameter name. Appending to the list will result in the list being modified. Reassigning the list inside the function will not change the original list, since:

a = [1, 2, 3]
b = a
b.append(4)
b = ['a', 'b']
print a, b      # prints [1, 2, 3, 4] ['a', 'b']

Since immutable types cannot be modified, they seem like being passed by value - passing an int into a function means assigning the int to the functions parameter. You can only ever reassign that, but it won't change the originial variables value.




Technically, Python always uses pass by reference values. I am going to repeat my other answer to support my statement.

Python always uses pass-by-reference values. There isn't any exception. Any variable assignment means copying the reference value. No exception. Any variable is the name bound to the reference value. Always.

You can think about a reference value as the address of the target object. The address is automatically dereferenced when used. This way, working with the reference value, it seems you work directly with the target object. But there always is a reference in between, one step more to jump to the target.

Here is the example that proves that Python uses passing by reference:

If the argument was passed by value, the outer lst could not be modified. The green are the target objects (the black is the value stored inside, the red is the object type), the yellow is the memory with the reference value inside -- drawn as the arrow. The blue solid arrow is the reference value that was passed to the function (via the dashed blue arrow path). The ugly dark yellow is the internal dictionary. (It actually could be drawn also as a green ellipse. The colour and the shape only says it is internal.)

You can use the id() built-in function to learn what the reference value is (that is, the address of the target object).

In compiled languages, a variable is a memory space that is able to capture the value of the type. In Python, a variable is a name (captured internally as a string) bound to the reference variable that holds the reference value to the target object. The name of the variable is the key in the internal dictionary, the value part of that dictionary item stores the reference value to the target.

Reference values are hidden in Python. There isn't any explicit user type for storing the reference value. However, you can use a list element (or element in any other suitable container type) as the reference variable, because all containers do store the elements also as references to the target objects. In other words, elements are actually not contained inside the container -- only the references to elements are.




(edit - Blair has updated his enormously popular answer so that it is now accurate)

I think it is important to note that the current post with the most votes (by Blair Conrad), while being correct with respect to its result, is misleading and is borderline incorrect based on its definitions. While there are many languages (like C) that allow the user to either pass by reference or pass by value, Python is not one of them.

David Cournapeau's answer points to the real answer and explains why the behavior in Blair Conrad's post seems to be correct while the definitions are not.

To the extent that Python is pass by value, all languages are pass by value since some piece of data (be it a "value" or a "reference") must be sent. However, that does not mean that Python is pass by value in the sense that a C programmer would think of it.

If you want the behavior, Blair Conrad's answer is fine. But if you want to know the nuts and bolts of why Python is neither pass by value or pass by reference, read David Cournapeau's answer.




You got some really good answers here.

x = [ 2, 4, 4, 5, 5 ]
print x  # 2, 4, 4, 5, 5

def go( li ) :
  li = [ 5, 6, 7, 8 ]  # re-assigning what li POINTS TO, does not
  # change the value of the ORIGINAL variable x

go( x ) 
print x  # 2, 4, 4, 5, 5  [ STILL! ]


raw_input( 'press any key to continue' )



Python’s pass-by-assignment scheme isn’t quite the same as C++’s reference parameters option, but it turns out to be very similar to the argument-passing model of the C language (and others) in practice:

  • Immutable arguments are effectively passed “by value.” Objects such as integers and strings are passed by object reference instead of by copying, but because you can’t change immutable objects in place anyhow, the effect is much like making a copy.
  • Mutable arguments are effectively passed “by pointer.” Objects such as lists and dictionaries are also passed by object reference, which is similar to the way C passes arrays as pointers—mutable objects can be changed in place in the function, much like C arrays.



A lot of insights in answers here, but i think an additional point is not clearly mentioned here explicitly. Quoting from python documentation https://docs.python.org/2/faq/programming.html#what-are-the-rules-for-local-and-global-variables-in-python

"In Python, variables that are only referenced inside a function are implicitly global. If a variable is assigned a new value anywhere within the function’s body, it’s assumed to be a local. If a variable is ever assigned a new value inside the function, the variable is implicitly local, and you need to explicitly declare it as ‘global’. Though a bit surprising at first, a moment’s consideration explains this. On one hand, requiring global for assigned variables provides a bar against unintended side-effects. On the other hand, if global was required for all global references, you’d be using global all the time. You’d have to declare as global every reference to a built-in function or to a component of an imported module. This clutter would defeat the usefulness of the global declaration for identifying side-effects."

Even when passing a mutable object to a function this still applies. And to me clearly explains the reason for the difference in behavior between assigning to the object and operating on the object in the function.

def test(l):
    print "Received", l , id(l)
    l = [0, 0, 0]
    print "Changed to", l, id(l)  # New local object created, breaking link to global l

l= [1,2,3]
print "Original", l, id(l)
test(l)
print "After", l, id(l)

gives:

Original [1, 2, 3] 4454645632
Received [1, 2, 3] 4454645632
Changed to [0, 0, 0] 4474591928
After [1, 2, 3] 4454645632

The assignment to an global variable that is not declared global therefore creates a new local object and breaks the link to the original object.




Aside from all the great explanations on how this stuff works in Python, I don't see a simple suggestion for the problem. As you seem to do create objects and instances, the pythonic way of handling instance variables and changing them is the following:

class PassByReference:
    def __init__(self):
        self.variable = 'Original'
        self.Change()
        print self.variable

    def Change(self):
        self.variable = 'Changed'

In instance methods, you normally refer to self to access instance attributes. It is normal to set instance attributes in __init__ and read or change them in instance methods. That is also why you pass self als the first argument to def Change.

Another solution would be to create a static method like this:

class PassByReference:
    def __init__(self):
        self.variable = 'Original'
        self.variable = PassByReference.Change(self.variable)
        print self.variable

    @staticmethod
    def Change(var):
        var = 'Changed'
        return var



I used the following method to quickly convert a couple of Fortran codes to Python. True, it's not pass by reference as the original question was posed, but is a simple work around in some cases.

a=0
b=0
c=0
def myfunc(a,b,c):
    a=1
    b=2
    c=3
    return a,b,c

a,b,c = myfunc(a,b,c)
print a,b,c



given the way python handles values and references to them, the only way you can reference an arbitrary instance attribute is by name:

class PassByReferenceIsh:
    def __init__(self):
        self.variable = 'Original'
        self.change('variable')
        print self.variable

    def change(self, var):
        self.__dict__[var] = 'Changed'

in real code you would, of course, add error checking on the dict lookup.




You can merely use an empty class as an instance to store reference objects because internally object attributes are stored in an instance dictionary. See the example.

class RefsObj(object):
    "A class which helps to create references to variables."
    pass

...

# an example of usage
def change_ref_var(ref_obj):
    ref_obj.val = 24

ref_obj = RefsObj()
ref_obj.val = 1
print(ref_obj.val) # or print ref_obj.val for python2
change_ref_var(ref_obj)
print(ref_obj.val)



Related