c++ - resueltos - tutorial qgis 2.8 español pdf




Elija la función para aplicar en función de la validez de una expresión (3)

El problema es el siguiente, en C++14 :

  • Tengamos dos funciones FV&& valid_f , FI&& invalid_f , y argumentos Args&&... args
  • La función apply_on_validity debe aplicarse valid_f en args si la expresión std::forward<FV>(valid_f)(std::forward<Args>(args)...) es válida
  • De lo contrario, y si std::forward<FV>(invalid_f)(std::forward<Args>(args)...) es una expresión válida, apply_on_validity debe aplicar invalid_f en args
  • De apply_on_validity contrario, apply_on_validity no debería hacer nada.

Supongo que el código debería parecerse a algo como esto:

template <class FV, class FI, class... Args, /* Some template metaprog here */>
void apply_on_validity(FV&& valid_f, FI&& invalid_f, Args&&... args)
{
    // Apply valid_f by default
    std::forward<FV>(valid_f)(std::forward<Args>(args)...);
}

template <class FV, class FI, class... Args, /* Some template metaprog here */>
void apply_on_validity(FV&& valid_f, FI&& invalid_f, Args&&... args)
{
    // Apply invalid_f if valid_f does not work
    std::forward<FV>(invalid_f)(std::forward<Args>(args)...);
}

template <class FV, class FI, class... Args, /* Some template metaprog here */>
void apply_on_validity(FV&& valid_f, FI&& invalid_f, Args&&... args)
{
    // Do nothing when neither valid_f nor invalid_f work
}

Pero realmente no sé cómo hacer eso. ¿Alguna idea?

Enlace a la generalización here .


Aquí hay una respuesta alternativa, sólo para patadas. Necesitamos un static_if :

template <class T, class F> T&& static_if(std::true_type, T&& t, F&& ) { return std::forward<T>(t); }
template <class T, class F> F&& static_if(std::false_type, T&& , F&& f) { return std::forward<F>(f); }

Y una is_callable . Ya que solo estás apoyando funciones, podemos hacerlo como:

template <class Sig, class = void>
struct is_callable : std::false_type { };

template <class F, class... Args>
struct is_callable<F(Args...), void_t<decltype(std::declval<F>()(std::declval<Args>()...))>>
: std::true_type
{ };

Y luego podemos construir la lógica en su lugar:

template <class FV, class FI, class... Args>
void apply_on_validity(FV&& valid_f, FI&& invalid_f, Args&&... args)
{
    auto noop = [](auto&&...) {};

    static_if(
        is_callable<FV&&(Args&&...)>{},
        std::forward<FV>(valid_f),
        static_if(
            std::is_callable<FI&&(Args&&...)>{},
            std::forward<FI>(invalid_f),
            noop
        )
    )(std::forward<Args>(args)...);
}

Primero, se is_detected una versión is_detected de C ++ 2a:

#include <utility>
#include <type_traits>
#include <iostream>
#include <tuple>

namespace details {
  template<class...>using void_t=void;
  template<template<class...>class Z, class=void, class...Ts>
  struct can_apply:std::false_type{};
  template<template<class...>class Z, class...Ts>
  struct can_apply<Z, void_t<Z<Ts...>>, Ts...>:std::true_type{};
}
template<template<class...>class Z, class...Ts>
using can_apply = typename details::can_apply<Z, void, Ts...>::type;

Como sucede, std :: result_of_t es el rasgo que queremos probar.

template<class Sig>
using can_call = can_apply< std::result_of_t, Sig >;

ahora can_call <Some (Sig, Goes, Here)> es true_type si se puede llamar a la expresión que desee.

Ahora escribimos algo de compilación en tiempo de despacho.

template<std::size_t I>
using index_t=std::integral_constant<std::size_t, I>;
template<std::size_t I>
constexpr index_t<I> index_v{};

constexpr inline index_t<0> dispatch_index() { return {}; }
template<class B0, class...Bs,
  std::enable_if_t<B0::value, int> =0
>
constexpr index_t<0> dispatch_index( B0, Bs... ) { return {}; }
template<class B0, class...Bs,
  std::enable_if_t<!B0::value, int> =0
>
constexpr auto dispatch_index( B0, Bs... ) { 
  return index_v< 1 + dispatch_index( Bs{}...) >;
}

template<class...Bs>
auto dispatch( Bs... ) {
  using I = decltype(dispatch_index( Bs{}... ));
  return [](auto&&...args){
    return std::get<I::value>( std::make_tuple(decltype(args)(args)..., [](auto&&...){}) );
  };
}

dispatch (SomeBools ...) devuelve un lambda. El primero de SomeBools, que es de verdad de tiempo de compilación (tiene un :: value que se evalúa como verdadero en un contexto booleano) determina lo que hace el lambda devuelto. Llama a eso el índice de despacho.

Devuelve el argumento dispatch_index'd a la siguiente llamada, y un lambda vacío si es el último de la lista.

template <class FV, class FI, class... Args /*, Some template metaprog here */>
void apply_on_validity(FV&& valid_f, FI&& invalid_f, Args&&... args)
{
  dispatch(
    can_call<FV(Args...)>{},
    can_call<FI(Args...)>{}
  )(
    [&](auto&& valid_f, auto&&)->decltype(auto) {
      return decltype(valid_f)(valid_f)(std::forward<Args>(args)...);
    },
    [&](auto&&, auto&& invalid_f)->decltype(auto) {
      return decltype(invalid_f)(valid_f)(std::forward<Args>(args)...);
    }
  )(
    valid_f, invalid_f
  );
}

y hecho, ejemplo vivo .

Podríamos hacer este genérico para habilitar esta versión. Primer index_over:

template<class=void,  std::size_t...Is >
auto index_over( std::index_sequence<Is...> ){
  return [](auto&&f)->decltype(auto){
    return decltype(f)(f)( std::integral_constant<std::size_t, Is>{}... );
  };
}
template<std::size_t N>
auto index_over(std::integral_constant<std::size_t, N> ={}){
  return index_over(std::make_index_sequence<N>{} );
}

Entonces auto_dispatch:

template<class...Fs>
auto auto_dispatch( Fs&&... fs ) {
  auto indexer =  index_over<sizeof...(fs)>();
  auto helper = [&](auto I)->decltype(auto){ 
    return std::get<decltype(I)::value>( std::forward_as_tuple( decltype(fs)(fs)... ) );
  };
  return indexer
  (
    [helper](auto...Is){
      auto fs_tuple = std::forward_as_tuple( helper(Is)... );
      return [fs_tuple](auto&&...args) {
        auto dispatcher = dispatch(can_call<Fs(decltype(args)...)>{}...);
        auto&& f0 = dispatcher(std::get<decltype(Is)::value>(fs_tuple)...);
        std::forward<decltype(f0)>(f0)(decltype(args)(args)...);
      };
    }
  );
}

con código de prueba:

auto a = [](int x){ std::cout << x << "\n"; };
auto b = [](std::string y){ std::cout << y << "\n";  };
struct Foo {};
auto c = [](Foo){ std::cout << "Foo\n";  };
int main() {
  auto_dispatch(a, c)( 7 );
  auto_dispatch(a, c)( Foo{} );
  auto_dispatch(a, b, c)( Foo{} );
  auto_dispatch(a, b, c)( "hello world" );
}

Ejemplo vivo


La respuesta de Piotr Skotnicki es excelente, pero un código como ese me obliga a señalar cuánto más limpio será C ++ 17 gracias a constexpr if y rasgos de tipo adicionales como is_callable : Demo Demo * Esta versión crea más advertencias pero es más simple

template <class FV, class FI, class... Args>
void apply_on_validity(FV&& valid_f, FI&& invalid_f, Args&&... args)
{
    if constexpr (std::is_callable_v<FV(Args...)>)
        std::cout << "Apply valid_f by default\n";
    else
    {
        if constexpr (std::is_callable_v<FI(Args...)>)
            std::cout << "Apply invalid_f if valid_f does not work\n";
        else
            std::cout << "Do nothing when neither valid_f nor invalid_f work\n";
    }
}




template-meta-programming