c# - programme - vb net random




Comment puis-je générer des chaînes alphanumériques aléatoires en C#? (20)

Cette implémentation (trouvée via google) me semble bien.

Contrairement à certaines des alternatives présentées, celle-ci est cryptographiquement saine .

using System.Security.Cryptography;
using System.Text;

namespace UniqueKey
{
    public class KeyGenerator
    {
        public static string GetUniqueKey(int maxSize)
        {
            char[] chars = new char[62];
            chars =
            "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890".ToCharArray();
            byte[] data = new byte[1];
            using (RNGCryptoServiceProvider crypto = new RNGCryptoServiceProvider())
            {
                crypto.GetNonZeroBytes(data);
                data = new byte[maxSize];
                crypto.GetNonZeroBytes(data);
            }
            StringBuilder result = new StringBuilder(maxSize);
            foreach (byte b in data)
            {
                result.Append(chars[b % (chars.Length)]);
            }
            return result.ToString();
        }
    }
}

Choisi celui d'une discussion sur les alternatives here

Comment puis-je générer des chaînes alphanumériques aléatoires à 8 caractères en C #?


Horrible, je sais, mais je ne pouvais pas m'en empêcher:


namespace ConsoleApplication2
{
    using System;
    using System.Text.RegularExpressions;

    class Program
    {
        static void Main(string[] args)
        {
            Random adomRng = new Random();
            string rndString = string.Empty;
            char c;

            for (int i = 0; i < 8; i++)
            {
                while (!Regex.IsMatch((c=Convert.ToChar(adomRng.Next(48,128))).ToString(), "[A-Za-z0-9]"));
                rndString += c;
            }

            Console.WriteLine(rndString + Environment.NewLine);
        }
    }
}


Je cherchais une réponse plus spécifique, où je veux contrôler le format de la chaîne aléatoire et suis tombé sur ce post. Par exemple: les plaques d'immatriculation (de voitures) ont un format spécifique (par pays) et je voulais créer des plaques d'immatriculation aléatoires.
J'ai décidé d'écrire ma propre méthode d'extension de Random pour cela. (Ceci est dans le but de réutiliser le même objet Random, comme vous pourriez avoir doublé dans les scénarios multi-threading). J'ai créé un résumé ( https://gist.github.com/SamVanhoutte/808845ca78b9c041e928 ), mais je vais également copier la classe d'extension ici:

void Main()
{
    Random rnd = new Random();
    rnd.GetString("1-###-000").Dump();
}

public static class RandomExtensions
{
    public static string GetString(this Random random, string format)
    {
        // Based on http://.com/questions/1344221/how-can-i-generate-random-alphanumeric-strings-in-c
        // Added logic to specify the format of the random string (# will be random string, 0 will be random numeric, other characters remain)
        StringBuilder result = new StringBuilder();
        for(int formatIndex = 0; formatIndex < format.Length ; formatIndex++)
        {
            switch(format.ToUpper()[formatIndex])
            {
                case '0': result.Append(getRandomNumeric(random)); break;
                case '#': result.Append(getRandomCharacter(random)); break;
                default : result.Append(format[formatIndex]); break;
            }
        }
        return result.ToString();
    }

    private static char getRandomCharacter(Random random)
    {
        string chars = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
        return chars[random.Next(chars.Length)];
    }

    private static char getRandomNumeric(Random random)
    {
        string nums = "0123456789";
        return nums[random.Next(nums.Length)];
    }
}

Juste quelques comparaisons de performance des différentes réponses dans ce fil:

Méthodes et configuration

// what's available
public static string possibleChars = "abcdefghijklmnopqrstuvwxyz";
// optimized (?) what's available
public static char[] possibleCharsArray = possibleChars.ToCharArray();
// optimized (precalculated) count
public static int possibleCharsAvailable = possibleChars.Length;
// shared randomization thingy
public static Random random = new Random();


// http://.com/a/1344242/1037948
public string LinqIsTheNewBlack(int num) {
    return new string(
    Enumerable.Repeat(possibleCharsArray, num)
              .Select(s => s[random.Next(s.Length)])
              .ToArray());
}

// http://.com/a/1344258/1037948
public string ForLoop(int num) {
    var result = new char[num];
    while(num-- > 0) {
        result[num] = possibleCharsArray[random.Next(possibleCharsAvailable)];
    }
    return new string(result);
}

public string ForLoopNonOptimized(int num) {
    var result = new char[num];
    while(num-- > 0) {
        result[num] = possibleChars[random.Next(possibleChars.Length)];
    }
    return new string(result);
}

public string Repeat(int num) {
    return new string(new char[num].Select(o => possibleCharsArray[random.Next(possibleCharsAvailable)]).ToArray());
}

// http://.com/a/1518495/1037948
public string GenerateRandomString(int num) {
  var rBytes = new byte[num];
  random.NextBytes(rBytes);
  var rName = new char[num];
  while(num-- > 0)
    rName[num] = possibleCharsArray[rBytes[num] % possibleCharsAvailable];
  return new string(rName);
}

//SecureFastRandom - or SolidSwiftRandom
static string GenerateRandomString(int Length) //Configurable output string length
{
    byte[] rBytes = new byte[Length]; 
    char[] rName = new char[Length];
    SolidSwiftRandom.GetNextBytesWithMax(rBytes, biasZone);
    for (var i = 0; i < Length; i++)
    {
        rName[i] = charSet[rBytes[i] % charSet.Length];
    }
    return new string(rName);
}

Résultats

Testé dans LinqPad. Pour une taille de chaîne de 10, génère:

  • de Linq = chdgmevhcy [10]
  • à partir de Loop = gtnoaryhxr [10]
  • de Select = rsndbztyby [10]
  • de GenerateRandomString = owyefjjakj [10]
  • de SecureFastRandom = VzougLYHYP [10]
  • de SecureFastRandom-NoCache = oVQXNGmO1S [10]

Et les numéros de performance ont tendance à varier légèrement, très occasionnellement NonOptimized est en réalité plus rapide, et parfois ForLoop et GenerateRandomString basculent en tête.

  • LinqIsTheNewBlack (10000x) = 96762 ticks écoulés (9.6762 ms)
  • ForLoop (10000x) = 28970 tiques écoulées (2.897 ms)
  • ForLoopNonOptimized (10000x) = 33336 ticks écoulés (3.3336 ms)
  • Répéter (10000x) = 78547 ticks écoulés (7.8547 ms)
  • GenerateRandomString (10000x) = 27416 ticks écoulés (2.7416 ms)
  • SecureFastRandom (10000x) = 13176 ticks écoulés (5ms) le plus bas [Machine différente]
  • SecureFastRandom-NoCache (10000x) = 39541 ticks écoulés (17ms) le plus bas [Machine différente]

Le plus simple:

public static string GetRandomAlphaNumeric()
{
    return Path.GetRandomFileName().Replace(".", "").Substring(0, 8);
}

Vous pouvez obtenir de meilleures performances si vous codez le tableau char et System.Random :

public static string GetRandomAlphaNumeric()
{
    var chars = "abcdefghijklmnopqrstuvwxyz0123456789";
    return new string(chars.Select(c => chars[random.Next(chars.Length)]).Take(8).ToArray());
}

Si jamais vous vous inquiétez les alphabets anglais peuvent changer quelque temps et vous pourriez perdre des affaires, alors vous pouvez éviter le codage dur, mais devrait fonctionner légèrement plus mauvais (comparable à l'approche de Path.GetRandomFileName )

public static string GetRandomAlphaNumeric()
{
    var chars = 'a'.To('z').Concat('0'.To('9')).ToList();
    return new string(chars.Select(c => chars[random.Next(chars.Length)]).Take(8).ToArray());
}

public static IEnumerable<char> To(this char start, char end)
{
    if (end < start)
        throw new ArgumentOutOfRangeException("the end char should not be less than start char", innerException: null);
    return Enumerable.Range(start, end - start + 1).Select(i => (char)i);
}

Les deux dernières approches semblent meilleures si vous pouvez en faire une méthode d'extension sur l'instance System.Random .


Les principaux objectifs de mon code sont:

  1. La distribution des cordes est presque uniforme (ne pas se soucier des écarts mineurs, tant qu'ils sont petits)
  2. Il génère plus de quelques milliards de chaînes pour chaque jeu d'arguments. Générer une chaîne de 8 caractères (~ 47 bits d'entropie) n'a pas de sens si votre PRNG ne génère que 2 milliards (31 bits d'entropie) de valeurs différentes.
  3. C'est sécurisé, puisque je m'attends à ce que les gens l'utilisent pour les mots de passe ou autres jetons de sécurité.

La première propriété est obtenue en prenant une valeur de 64 bits modulo la taille de l'alphabet. Pour les petits alphabets (tels que les 62 caractères de la question), cela conduit à un biais négligeable. Les deuxième et troisième propriétés sont obtenues en utilisant RNGCryptoServiceProvider au lieu de System.Random .

using System;
using System.Security.Cryptography;

public static string GetRandomAlphanumericString(int length)
{
    const string alphanumericCharacters =
        "ABCDEFGHIJKLMNOPQRSTUVWXYZ" +
        "abcdefghijklmnopqrstuvwxyz" +
        "0123456789";
    return GetRandomString(length, alphanumericCharacters);
}

public static string GetRandomString(int length, IEnumerable<char> characterSet)
{
    if (length < 0)
        throw new ArgumentException("length must not be negative", "length");
    if (length > int.MaxValue / 8) // 250 million chars ought to be enough for anybody
        throw new ArgumentException("length is too big", "length");
    if (characterSet == null)
        throw new ArgumentNullException("characterSet");
    var characterArray = characterSet.Distinct().ToArray();
    if (characterArray.Length == 0)
        throw new ArgumentException("characterSet must not be empty", "characterSet");

    var bytes = new byte[length * 8];
    new RNGCryptoServiceProvider().GetBytes(bytes);
    var result = new char[length];
    for (int i = 0; i < length; i++)
    {
        ulong value = BitConverter.ToUInt64(bytes, i * 8);
        result[i] = characterArray[value % (uint)characterArray.Length];
    }
    return new string(result);
}

Nous utilisons également une chaîne personnalisée aléatoire mais nous l'avons implémentée en tant qu'assistance de chaîne, donc elle offre une certaine flexibilité ...

public static string Random(this string chars, int length = 8)
{
    var randomString = new StringBuilder();
    var random = new Random();

    for (int i = 0; i < length; i++)
        randomString.Append(chars[random.Next(chars.Length)]);

    return randomString.ToString();
}

Usage

var random = "ABCDEFGHIJKLMNOPQRSTUVWXYZ".Random();

ou

var random = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789".Random(16);


Une autre option pourrait être d'utiliser Linq et d'agréger des caractères aléatoires dans un stringbuilder.

var chars = "abcdefghijklmnopqrstuvwxyz123456789".ToArray();
string pw = Enumerable.Range(0, passwordLength)
                      .Aggregate(
                          new StringBuilder(),
                          (sb, n) => sb.Append((chars[random.Next(chars.Length)])),
                          sb => sb.ToString());

Une version légèrement plus propre de la solution DTB.

    var chars = "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
    var random = new Random();
    var list = Enumerable.Repeat(0, 8).Select(x=>chars[random.Next(chars.Length)]);
    return string.Join("", list);

Your style preferences may vary.


Question: Pourquoi devrais-je perdre mon temps en utilisant Enumerable.Range au lieu de taper "ABCDEFGHJKLMNOPQRSTUVWXYZ0123456789" ?

using System;
using System.Collections.Generic;
using System.Linq;

public class Test
{
    public static void Main()
    {
        var randomCharacters = GetRandomCharacters(8, true);
        Console.WriteLine(new string(randomCharacters.ToArray()));
    }

    private static List<char> getAvailableRandomCharacters(bool includeLowerCase)
    {
        var integers = Enumerable.Empty<int>();
        integers = integers.Concat(Enumerable.Range('A', 26));
        integers = integers.Concat(Enumerable.Range('0', 10));

        if ( includeLowerCase )
            integers = integers.Concat(Enumerable.Range('a', 26));

        return integers.Select(i => (char)i).ToList();
    }

    public static IEnumerable<char> GetRandomCharacters(int count, bool includeLowerCase)
    {
        var characters = getAvailableRandomCharacters(includeLowerCase);
        var random = new Random();
        var result = Enumerable.Range(0, count)
            .Select(_ => characters[random.Next(characters.Count)]);

        return result;
    }
}

Réponse: Les cordes magiques sont mauvaises. Quelqu'un at-il remarqué qu'il n'y avait pas de " I " dans ma ficelle en haut? Ma mère m'a appris à ne pas utiliser de chaînes magiques pour cette raison ...

nb 1: Comme beaucoup d'autres comme @dtb, n'utilisez pas System.Random si vous avez besoin d'une sécurité cryptographique ...

nb 2: Cette réponse n'est pas la plus efficace ou la plus courte, mais je voulais que l'espace sépare la réponse de la question. Le but de ma réponse est plus de mettre en garde contre les ficelles magiques que de fournir une réponse innovante.


Solution 1 - la plus grande «gamme» avec la longueur la plus flexible

string get_unique_string(int string_length) {
    using(var rng = new RNGCryptoServiceProvider()) {
        var bit_count = (string_length * 6);
        var byte_count = ((bit_count + 7) / 8); // rounded up
        var bytes = new byte[byte_count];
        rng.GetBytes(bytes);
        return Convert.ToBase64String(bytes);
    }
}

Cette solution a plus de portée que l'utilisation d'un GUID car un GUID a un couple de bits fixes qui sont toujours les mêmes et donc pas aléatoires, par exemple le 13 caractères hexadécimal est toujours "4" - au moins dans un GUID version 6.

Cette solution vous permet également de générer une chaîne de n'importe quelle longueur.

Solution 2 - Une ligne de code - valable jusqu'à 22 caractères

Convert.ToBase64String(Guid.NewGuid().ToByteArray()).Substring(0, 8);

Vous ne pouvez pas générer de chaînes tant que la solution 1 et la chaîne n'ont pas la même plage en raison de bits fixes dans les GUID, mais dans de nombreux cas, cela fera l'affaire.

Solution 3 - Un peu moins de code

Guid.NewGuid().ToString("n").Substring(0, 8);

Principalement en gardant ceci ici à des fins historiques. Il utilise un peu moins de code, ce qui revient à dépenser moins d'espace - car il utilise hex au lieu de base64, il faut plus de caractères pour représenter la même plage par rapport aux autres solutions.

Ce qui signifie plus de chance de collision - le tester avec 100 000 itérations de 8 chaînes de caractères a généré un doublon.


After reviewing the other answers and considering CodeInChaos' comments, along with CodeInChaos still biased (although less) answer, I thought a final ultimate cut and paste solution was needed. So while updating my answer I decided to go all out.

For an up to date version of this code, please visit the new Hg repository on Bitbucket: https://bitbucket.org/merarischroeder/secureswiftrandom . I recommend you copy and paste the code from: https://bitbucket.org/merarischroeder/secureswiftrandom/src/6c14b874f34a3f6576b0213379ecdf0ffc7496ea/Code/Alivate.SolidSwiftRandom/SolidSwiftRandom.cs?at=default&fileviewer=file-view-default (make sure you click the Raw button to make it easier to copy and make sure you have the latest version, I think this link goes to a specific version of the code, not the latest).

Updated notes:

  1. Relating to some other answers - If you know the length of the output, you don't need a StringBuilder, and when using ToCharArray, this creates and fills the array (you don't need to create an empty array first)
  2. Relating to some other answers - You should use NextBytes, rather than getting one at a time for performance
  3. Technically you could pin the byte array for faster access.. it's usually worth it when your iterating more than 6-8 times over a byte array. (Not done here)
  4. Use of RNGCryptoServiceProvider for best randomness
  5. Use of caching of a 1MB buffer of random data - benchmarking shows cached single bytes access speed is ~1000x faster - taking 9ms over 1MB vs 989ms for uncached.
  6. Optimised rejection of bias zone within my new class.

End solution to question:

static char[] charSet =  "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789".ToCharArray();
static int byteSize = 256; //Labelling convenience
static int biasZone = byteSize - (byteSize % charSet.Length);
public string GenerateRandomString(int Length) //Configurable output string length
{
    byte[] rBytes = new byte[Length]; //Do as much before and after lock as possible
    char[] rName = new char[Length];
    SecureFastRandom.GetNextBytesMax(rBytes, biasZone);
    for (var i = 0; i < Length; i++)
    {
        rName[i] = charSet[rBytes[i] % charSet.Length];
    }
    return new string(rName);
}

But you need my new (untested) class:

/// <summary>
/// My benchmarking showed that for RNGCryptoServiceProvider:
/// 1. There is negligable benefit of sharing RNGCryptoServiceProvider object reference 
/// 2. Initial GetBytes takes 2ms, and an initial read of 1MB takes 3ms (starting to rise, but still negligable)
/// 2. Cached is ~1000x faster for single byte at a time - taking 9ms over 1MB vs 989ms for uncached
/// </summary>
class SecureFastRandom
{
    static byte[] byteCache = new byte[1000000]; //My benchmark showed that an initial read takes 2ms, and an initial read of this size takes 3ms (starting to raise)
    static int lastPosition = 0;
    static int remaining = 0;

    /// <summary>
    /// Static direct uncached access to the RNGCryptoServiceProvider GetBytes function
    /// </summary>
    /// <param name="buffer"></param>
    public static void DirectGetBytes(byte[] buffer)
    {
        using (var r = new RNGCryptoServiceProvider())
        {
            r.GetBytes(buffer);
        }
    }

    /// <summary>
    /// Main expected method to be called by user. Underlying random data is cached from RNGCryptoServiceProvider for best performance
    /// </summary>
    /// <param name="buffer"></param>
    public static void GetBytes(byte[] buffer)
    {
        if (buffer.Length > byteCache.Length)
        {
            DirectGetBytes(buffer);
            return;
        }

        lock (byteCache)
        {
            if (buffer.Length > remaining)
            {
                DirectGetBytes(byteCache);
                lastPosition = 0;
                remaining = byteCache.Length;
            }

            Buffer.BlockCopy(byteCache, lastPosition, buffer, 0, buffer.Length);
            lastPosition += buffer.Length;
            remaining -= buffer.Length;
        }
    }

    /// <summary>
    /// Return a single byte from the cache of random data.
    /// </summary>
    /// <returns></returns>
    public static byte GetByte()
    {
        lock (byteCache)
        {
            return UnsafeGetByte();
        }
    }

    /// <summary>
    /// Shared with public GetByte and GetBytesWithMax, and not locked to reduce lock/unlocking in loops. Must be called within lock of byteCache.
    /// </summary>
    /// <returns></returns>
    static byte UnsafeGetByte()
    {
        if (1 > remaining)
        {
            DirectGetBytes(byteCache);
            lastPosition = 0;
            remaining = byteCache.Length;
        }

        lastPosition++;
        remaining--;
        return byteCache[lastPosition - 1];
    }

    /// <summary>
    /// Rejects bytes which are equal to or greater than max. This is useful for ensuring there is no bias when you are modulating with a non power of 2 number.
    /// </summary>
    /// <param name="buffer"></param>
    /// <param name="max"></param>
    public static void GetBytesWithMax(byte[] buffer, byte max)
    {
        if (buffer.Length > byteCache.Length / 2) //No point caching for larger sizes
        {
            DirectGetBytes(buffer);

            lock (byteCache)
            {
                UnsafeCheckBytesMax(buffer, max);
            }
        }
        else
        {
            lock (byteCache)
            {
                if (buffer.Length > remaining) //Recache if not enough remaining, discarding remaining - too much work to join two blocks
                    DirectGetBytes(byteCache);

                Buffer.BlockCopy(byteCache, lastPosition, buffer, 0, buffer.Length);
                lastPosition += buffer.Length;
                remaining -= buffer.Length;

                UnsafeCheckBytesMax(buffer, max);
            }
        }
    }

    /// <summary>
    /// Checks buffer for bytes equal and above max. Must be called within lock of byteCache.
    /// </summary>
    /// <param name="buffer"></param>
    /// <param name="max"></param>
    static void UnsafeCheckBytesMax(byte[] buffer, byte max)
    {
        for (int i = 0; i < buffer.Length; i++)
        {
            while (buffer[i] >= max)
                buffer[i] = UnsafeGetByte(); //Replace all bytes which are equal or above max
        }
    }
}

For history - my older solution for this answer, used Random object:

    private static char[] charSet =
      "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789".ToCharArray();

    static rGen = new Random(); //Must share, because the clock seed only has Ticks (~10ms) resolution, yet lock has only 20-50ns delay.
    static int byteSize = 256; //Labelling convenience
    static int biasZone = byteSize - (byteSize % charSet.Length);
    static bool SlightlyMoreSecurityNeeded = true; //Configuration - needs to be true, if more security is desired and if charSet.Length is not divisible by 2^X.
    public string GenerateRandomString(int Length) //Configurable output string length
    {
      byte[] rBytes = new byte[Length]; //Do as much before and after lock as possible
      char[] rName = new char[Length];
      lock (rGen) //~20-50ns
      {
          rGen.NextBytes(rBytes);

          for (int i = 0; i < Length; i++)
          {
              while (SlightlyMoreSecurityNeeded && rBytes[i] >= biasZone) //Secure against 1/5 increased bias of index[0-7] values against others. Note: Must exclude where it == biasZone (that is >=), otherwise there's still a bias on index 0.
                  rBytes[i] = rGen.NextByte();
              rName[i] = charSet[rBytes[i] % charSet.Length];
          }
      }
      return new string(rName);
    }

Performance:

  1. SecureFastRandom - First single run = ~9-33ms . Imperceptible. Ongoing : 5ms (sometimes it goes up to 13ms) over 10,000 iterations, With a single average iteration= 1.5 microseconds. . Note: Requires generally 2, but occasionally up to 8 cache refreshes - depends on how many single bytes exceed the bias zone
  2. Random - First single run = ~0-1ms . Imperceptible. Ongoing : 5ms over 10,000 iterations. With a single average iteration= .5 microseconds. . About the same speed.

Here is a mechanism to generate a random alpha-numeric string (I use this to generate passwords and test data) without defining the alphabet and numbers,

CleanupBase64 will remove necessary parts in the string and keep adding random alpha-numeric letters recursively.

        public static string GenerateRandomString(int length)
        {
            var numArray = new byte[length];
            new RNGCryptoServiceProvider().GetBytes(numArray);
            return CleanUpBase64String(Convert.ToBase64String(numArray), length);
        }

        private static string CleanUpBase64String(string input, int maxLength)
        {
            input = input.Replace("-", "");
            input = input.Replace("=", "");
            input = input.Replace("/", "");
            input = input.Replace("+", "");
            input = input.Replace(" ", "");
            while (input.Length < maxLength)
                input = input + GenerateRandomString(maxLength);
            return input.Length <= maxLength ?
                input.ToUpper() : //In my case I want capital letters
                input.ToUpper().Substring(0, maxLength);
        }

I don't know how cryptographically sound this is, but it's more readable and concise than the more intricate solutions by far (imo), and it should be more "random" than System.Random -based solutions.

return alphabet
    .OrderBy(c => Guid.NewGuid())
    .Take(strLength)
    .Aggregate(
        new StringBuilder(),
        (builder, c) => builder.Append(c))
    .ToString();

I can't decide if I think this version or the next one is "prettier", but they give the exact same results:

return new string(alphabet
    .OrderBy(o => Guid.NewGuid())
    .Take(strLength)
    .ToArray());

Granted, it isn't optimized for speed, so if it's mission critical to generate millions of random strings every second, try another one!

NOTE: This solution doesn't allow for repetitions of symbols in the alphabet, and the alphabet MUST be of equal or greater size than the output string, making this approach less desirable in some circumstances, it all depends on your use-case.


I know this one is not the best way. But you can try this.

string str = Path.GetRandomFileName(); //This method returns a random file name of 11 characters
str = str.Replace(".","");
Console.WriteLine("Random string: " + str);

Now in one-liner flavour.

private string RandomName
    {
        get
        {
            return new string(
                Enumerable.Repeat("ABCDEFGHIJKLMNOPQRSTUVWXYZ", 13)
                    .Select(s =>
                    {
                        var cryptoResult = new byte[4];
                        new RNGCryptoServiceProvider().GetBytes(cryptoResult);
                        return s[new Random(BitConverter.ToInt32(cryptoResult, 0)).Next(s.Length)];
                    })
                    .ToArray());
        }
    }

Try to combine two parts: unique (sequence, counter or date ) and random

public class RandomStringGenerator
{
    public static string Gen()
    {
        return ConvertToBase(DateTime.UtcNow.ToFileTimeUtc()) + GenRandomStrings(5); //keep length fixed at least of one part
    }

    private static string GenRandomStrings(int strLen)
    {
        var result = string.Empty;

        var Gen = new RNGCryptoServiceProvider();
        var data = new byte[1];

        while (result.Length < strLen)
        {
            Gen.GetNonZeroBytes(data);
            int code = data[0];
            if (code > 48 && code < 57 || // 0-9
                code > 65 && code < 90 || // A-Z
                code > 97 && code < 122   // a-z
                )
            {
                result += Convert.ToChar(code);
            }
        }

        return result;
    }

    private static string ConvertToBase(long num, int nbase = 36)
    {
        var chars = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; //if you wish make algoritm more secure - change order of letter here

        // check if we can convert to another base
        if (nbase < 2 || nbase > chars.Length)
            return null;

        int r;
        var newNumber = string.Empty;

        // in r we have the offset of the char that was converted to the new base
        while (num >= nbase)
        {
            r = (int) (num % nbase);
            newNumber = chars[r] + newNumber;
            num = num / nbase;
        }
        // the last number to convert
        newNumber = chars[(int)num] + newNumber;

        return newNumber;
    }
}

Tests:

[Test]
    public void Generator_Should_BeUnigue1()
    {
        //Given
        var loop = Enumerable.Range(0, 1000);
        //When
        var str = loop.Select(x=> RandomStringGenerator.Gen());
        //Then
        var distinct = str.Distinct();
        Assert.AreEqual(loop.Count(),distinct.Count()); // Or Assert.IsTrue(distinct.Count() < 0.95 * loop.Count())
    }

 public static string RandomString(int length)
    {
        const string chars = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789";
        var random = new Random();
        return new string(Enumerable.Repeat(chars, length).Select(s => s[random.Next(s.Length)]).ToArray());
    }

public static class StringHelper
{
    private static readonly Random random = new Random();

    private const int randomSymbolsDefaultCount = 8;
    private const string availableChars = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789";

    private static int randomSymbolsIndex = 0;

    public static string GetRandomSymbols()
    {
        return GetRandomSymbols(randomSymbolsDefaultCount);
    }

    public static string GetRandomSymbols(int count)
    {
        var index = randomSymbolsIndex;
        var result = new string(
            Enumerable.Repeat(availableChars, count)
                      .Select(s => {
                          index += random.Next(s.Length);
                          if (index >= s.Length)
                              index -= s.Length;
                          return s[index];
                      })
                      .ToArray());
        randomSymbolsIndex = index;
        return result;
    }
}






random