utiliser - python decorator class




Comment faire une chaîne de décorateurs de fonction? (11)

Comment puis-je faire deux décorateurs en Python qui feraient ce qui suit?

@makebold
@makeitalic
def say():
   return "Hello"

... qui devrait revenir:

"<b><i>Hello</i></b>"

Je n'essaie pas de créer du HTML cette manière dans une application réelle, mais simplement de comprendre comment fonctionnent les décorateurs et l'enchaînement de décorateurs.


Comment puis-je faire deux décorateurs en Python qui feraient ce qui suit?

Vous voulez la fonction suivante, lorsqu'elle est appelée:

@makebold
@makeitalic
def say():
    return "Hello"

Revenir:

<b><i>Hello</i></b>

Solution simple

Pour le faire plus simplement, créez des décorateurs qui renvoient des lambdas (fonctions anonymes) qui se referment sur la fonction (fermetures) et appelez-le:

def makeitalic(fn):
    return lambda: '<i>' + fn() + '</i>'

def makebold(fn):
    return lambda: '<b>' + fn() + '</b>'

Maintenant, utilisez-les comme vous le souhaitez:

@makebold
@makeitalic
def say():
    return 'Hello'

et maintenant:

>>> say()
'<b><i>Hello</i></b>'

Problèmes avec la solution simple

Mais nous semblons avoir presque perdu la fonction d'origine.

>>> say
<function <lambda> at 0x4ACFA070>

Pour le trouver, il faudrait creuser la fermeture de chaque lambda, dont l'un est enterré dans l'autre:

>>> say.__closure__[0].cell_contents
<function <lambda> at 0x4ACFA030>
>>> say.__closure__[0].cell_contents.__closure__[0].cell_contents
<function say at 0x4ACFA730>

Donc, si nous mettons de la documentation sur cette fonction, ou si nous voulions pouvoir décorer des fonctions prenant plus d’un argument, ou si nous voulions simplement savoir quelle fonction nous examinions dans une session de débogage, nous devons en faire un peu plus avec notre emballage.

Solution complète - surmontant la plupart de ces problèmes

Nous avons le décorateur wrapsdu functoolsmodule dans la bibliothèque standard!

from functools import wraps

def makeitalic(fn):
    # must assign/update attributes from wrapped function to wrapper
    # __module__, __name__, __doc__, and __dict__ by default
    @wraps(fn) # explicitly give function whose attributes it is applying
    def wrapped(*args, **kwargs):
        return '<i>' + fn(*args, **kwargs) + '</i>'
    return wrapped

def makebold(fn):
    @wraps(fn)
    def wrapped(*args, **kwargs):
        return '<b>' + fn(*args, **kwargs) + '</b>'
    return wrapped

Il est malheureux qu'il y ait encore de la chaudière, mais c'est aussi simple que nous pouvons le faire.

En Python 3, vous obtenez également __qualname__et __annotations__attribué par défaut.

Alors maintenant:

@makebold
@makeitalic
def say():
    """This function returns a bolded, italicized 'hello'"""
    return 'Hello'

Et maintenant:

>>> say
<function say at 0x14BB8F70>
>>> help(say)
Help on function say in module __main__:

say(*args, **kwargs)
    This function returns a bolded, italicized 'hello'

Conclusion

Nous voyons donc que wrapsla fonction d’emballage fait presque tout sauf de nous dire exactement ce que la fonction prend comme arguments.

D'autres modules peuvent tenter de résoudre le problème, mais la solution ne figure pas encore dans la bibliothèque standard.


Décorez les fonctions avec un nombre d'arguments différent:

def frame_tests(fn):
    def wrapper(*args):
        print "\nStart: %s" %(fn.__name__)
        fn(*args)
        print "End: %s\n" %(fn.__name__)
    return wrapper

@frame_tests
def test_fn1():
    print "This is only a test!"

@frame_tests
def test_fn2(s1):
    print "This is only a test! %s" %(s1)

@frame_tests
def test_fn3(s1, s2):
    print "This is only a test! %s %s" %(s1, s2)

if __name__ == "__main__":
    test_fn1()
    test_fn2('OK!')
    test_fn3('OK!', 'Just a test!')

Résultat:

Start: test_fn1  
This is only a test!  
End: test_fn1  


Start: test_fn2  
This is only a test! OK!  
End: test_fn2  


Start: test_fn3  
This is only a test! OK! Just a test!  
End: test_fn3  

Et bien sûr, vous pouvez aussi retourner des lambdas à partir d'une fonction de décorateur:

def makebold(f): 
    return lambda: "<b>" + f() + "</b>"
def makeitalic(f): 
    return lambda: "<i>" + f() + "</i>"

@makebold
@makeitalic
def say():
    return "Hello"

print say()

Il semble que les autres personnes vous aient déjà expliqué comment résoudre le problème. J'espère que cela vous aidera à comprendre ce que sont les décorateurs.

Les décorateurs ne sont que du sucre syntaxique.

Ce

@decorator
def func():
    ...

s'étend à

def func():
    ...
func = decorator(func)

Si vous n'avez pas besoin de longues explications, voyez la réponse de Paolo Bergantino .

Les bases du décorateur

Les fonctions de Python sont des objets

Pour comprendre les décorateurs, vous devez d’abord comprendre que les fonctions sont des objets en Python. Cela a des conséquences importantes. Voyons pourquoi avec un exemple simple:

def shout(word="yes"):
    return word.capitalize()+"!"

print(shout())
# outputs : 'Yes!'

# As an object, you can assign the function to a variable like any other object 
scream = shout

# Notice we don't use parentheses: we are not calling the function,
# we are putting the function "shout" into the variable "scream".
# It means you can then call "shout" from "scream":

print(scream())
# outputs : 'Yes!'

# More than that, it means you can remove the old name 'shout',
# and the function will still be accessible from 'scream'

del shout
try:
    print(shout())
except NameError, e:
    print(e)
    #outputs: "name 'shout' is not defined"

print(scream())
# outputs: 'Yes!'

Garde ça en tête. Nous y reviendrons sous peu.

Une autre propriété intéressante des fonctions Python est qu'elles peuvent être définies dans une autre fonction!

def talk():

    # You can define a function on the fly in "talk" ...
    def whisper(word="yes"):
        return word.lower()+"..."

    # ... and use it right away!
    print(whisper())

# You call "talk", that defines "whisper" EVERY TIME you call it, then
# "whisper" is called in "talk". 
talk()
# outputs: 
# "yes..."

# But "whisper" DOES NOT EXIST outside "talk":

try:
    print(whisper())
except NameError, e:
    print(e)
    #outputs : "name 'whisper' is not defined"*
    #Python's functions are objects

Références de fonctions

Ok, toujours là? Maintenant la partie amusante ...

Vous avez vu que les fonctions sont des objets. Par conséquent, fonctions:

  • peut être assigné à une variable
  • peut être défini dans une autre fonction

Cela signifie qu'une fonction peut return une autre fonction .

def getTalk(kind="shout"):

    # We define functions on the fly
    def shout(word="yes"):
        return word.capitalize()+"!"

    def whisper(word="yes") :
        return word.lower()+"...";

    # Then we return one of them
    if kind == "shout":
        # We don't use "()", we are not calling the function,
        # we are returning the function object
        return shout  
    else:
        return whisper

# How do you use this strange beast?

# Get the function and assign it to a variable
talk = getTalk()      

# You can see that "talk" is here a function object:
print(talk)
#outputs : <function shout at 0xb7ea817c>

# The object is the one returned by the function:
print(talk())
#outputs : Yes!

# And you can even use it directly if you feel wild:
print(getTalk("whisper")())
#outputs : yes...

Il y a plus!

Si vous pouvez return une fonction, vous pouvez en passer une en tant que paramètre:

def doSomethingBefore(func): 
    print("I do something before then I call the function you gave me")
    print(func())

doSomethingBefore(scream)
#outputs: 
#I do something before then I call the function you gave me
#Yes!

Eh bien, vous avez juste tout ce qu'il faut pour comprendre les décorateurs. Vous voyez, les décorateurs sont des «wrappers», ce qui signifie qu'ils vous permettent d'exécuter du code avant et après la fonction qu'ils décorent sans modifier la fonction elle-même.

Décorateurs artisanaux

Comment vous le feriez manuellement:

# A decorator is a function that expects ANOTHER function as parameter
def my_shiny_new_decorator(a_function_to_decorate):

    # Inside, the decorator defines a function on the fly: the wrapper.
    # This function is going to be wrapped around the original function
    # so it can execute code before and after it.
    def the_wrapper_around_the_original_function():

        # Put here the code you want to be executed BEFORE the original function is called
        print("Before the function runs")

        # Call the function here (using parentheses)
        a_function_to_decorate()

        # Put here the code you want to be executed AFTER the original function is called
        print("After the function runs")

    # At this point, "a_function_to_decorate" HAS NEVER BEEN EXECUTED.
    # We return the wrapper function we have just created.
    # The wrapper contains the function and the code to execute before and after. It’s ready to use!
    return the_wrapper_around_the_original_function

# Now imagine you create a function you don't want to ever touch again.
def a_stand_alone_function():
    print("I am a stand alone function, don't you dare modify me")

a_stand_alone_function() 
#outputs: I am a stand alone function, don't you dare modify me

# Well, you can decorate it to extend its behavior.
# Just pass it to the decorator, it will wrap it dynamically in 
# any code you want and return you a new function ready to be used:

a_stand_alone_function_decorated = my_shiny_new_decorator(a_stand_alone_function)
a_stand_alone_function_decorated()
#outputs:
#Before the function runs
#I am a stand alone function, don't you dare modify me
#After the function runs

Maintenant, vous voulez probablement qu'à chaque fois que vous appelez a_stand_alone_function , a_stand_alone_function_decorated soit appelé à la place. C'est facile, a_stand_alone_function simplement a_stand_alone_function avec la fonction renvoyée par my_shiny_new_decorator :

a_stand_alone_function = my_shiny_new_decorator(a_stand_alone_function)
a_stand_alone_function()
#outputs:
#Before the function runs
#I am a stand alone function, don't you dare modify me
#After the function runs

# That’s EXACTLY what decorators do!

Les décorateurs démystifiés

L'exemple précédent, utilisant la syntaxe de décorateur:

@my_shiny_new_decorator
def another_stand_alone_function():
    print("Leave me alone")

another_stand_alone_function()  
#outputs:  
#Before the function runs
#Leave me alone
#After the function runs

Oui, c'est tout, c'est aussi simple que cela. @decorator est juste un raccourci vers:

another_stand_alone_function = my_shiny_new_decorator(another_stand_alone_function)

Les décorateurs ne sont qu'une variante pythonique du motif de conception du décorateur . Plusieurs modèles de conception classiques sont intégrés à Python pour faciliter le développement (comme les itérateurs).

Bien sûr, vous pouvez accumuler des décorateurs:

def bread(func):
    def wrapper():
        print("</''''''\>")
        func()
        print("<\______/>")
    return wrapper

def ingredients(func):
    def wrapper():
        print("#tomatoes#")
        func()
        print("~salad~")
    return wrapper

def sandwich(food="--ham--"):
    print(food)

sandwich()
#outputs: --ham--
sandwich = bread(ingredients(sandwich))
sandwich()
#outputs:
#</''''''\>
# #tomatoes#
# --ham--
# ~salad~
#<\______/>

Utilisation de la syntaxe du décorateur Python:

@bread
@ingredients
def sandwich(food="--ham--"):
    print(food)

sandwich()
#outputs:
#</''''''\>
# #tomatoes#
# --ham--
# ~salad~
#<\______/>

L'ordre dans lequel vous placez les décorateurs compte:

@ingredients
@bread
def strange_sandwich(food="--ham--"):
    print(food)

strange_sandwich()
#outputs:
##tomatoes#
#</''''''\>
# --ham--
#<\______/>
# ~salad~

Maintenant: pour répondre à la question ...

En conclusion, vous pouvez facilement voir comment répondre à la question:

# The decorator to make it bold
def makebold(fn):
    # The new function the decorator returns
    def wrapper():
        # Insertion of some code before and after
        return "<b>" + fn() + "</b>"
    return wrapper

# The decorator to make it italic
def makeitalic(fn):
    # The new function the decorator returns
    def wrapper():
        # Insertion of some code before and after
        return "<i>" + fn() + "</i>"
    return wrapper

@makebold
@makeitalic
def say():
    return "hello"

print(say())
#outputs: <b><i>hello</i></b>

# This is the exact equivalent to 
def say():
    return "hello"
say = makebold(makeitalic(say))

print(say())
#outputs: <b><i>hello</i></b>

Vous pouvez maintenant laisser heureux, ou graver votre cerveau un peu plus et voir les utilisations avancées de décorateurs.

Emmener les décorateurs au niveau supérieur

Passer des arguments à la fonction décorée

# It’s not black magic, you just have to let the wrapper 
# pass the argument:

def a_decorator_passing_arguments(function_to_decorate):
    def a_wrapper_accepting_arguments(arg1, arg2):
        print("I got args! Look: {0}, {1}".format(arg1, arg2))
        function_to_decorate(arg1, arg2)
    return a_wrapper_accepting_arguments

# Since when you are calling the function returned by the decorator, you are
# calling the wrapper, passing arguments to the wrapper will let it pass them to 
# the decorated function

@a_decorator_passing_arguments
def print_full_name(first_name, last_name):
    print("My name is {0} {1}".format(first_name, last_name))

print_full_name("Peter", "Venkman")
# outputs:
#I got args! Look: Peter Venkman
#My name is Peter Venkman

Méthodes de décoration

Une chose intéressante à propos de Python est que les méthodes et les fonctions sont vraiment les mêmes. La seule différence est que les méthodes s'attendent à ce que leur premier argument soit une référence à l'objet actuel ( self ).

Cela signifie que vous pouvez créer un décorateur pour les méthodes de la même manière! Rappelez-vous simplement de prendre en compte:

def method_friendly_decorator(method_to_decorate):
    def wrapper(self, lie):
        lie = lie - 3 # very friendly, decrease age even more :-)
        return method_to_decorate(self, lie)
    return wrapper


class Lucy(object):

    def __init__(self):
        self.age = 32

    @method_friendly_decorator
    def sayYourAge(self, lie):
        print("I am {0}, what did you think?".format(self.age + lie))

l = Lucy()
l.sayYourAge(-3)
#outputs: I am 26, what did you think?

Si vous *args, **kwargs un décorateur polyvalent - celui que vous appliquerez à n'importe quelle fonction ou méthode, *args, **kwargs ses arguments - utilisez simplement *args, **kwargs :

def a_decorator_passing_arbitrary_arguments(function_to_decorate):
    # The wrapper accepts any arguments
    def a_wrapper_accepting_arbitrary_arguments(*args, **kwargs):
        print("Do I have args?:")
        print(args)
        print(kwargs)
        # Then you unpack the arguments, here *args, **kwargs
        # If you are not familiar with unpacking, check:
        # http://www.saltycrane.com/blog/2008/01/how-to-use-args-and-kwargs-in-python/
        function_to_decorate(*args, **kwargs)
    return a_wrapper_accepting_arbitrary_arguments

@a_decorator_passing_arbitrary_arguments
def function_with_no_argument():
    print("Python is cool, no argument here.")

function_with_no_argument()
#outputs
#Do I have args?:
#()
#{}
#Python is cool, no argument here.

@a_decorator_passing_arbitrary_arguments
def function_with_arguments(a, b, c):
    print(a, b, c)

function_with_arguments(1,2,3)
#outputs
#Do I have args?:
#(1, 2, 3)
#{}
#1 2 3 

@a_decorator_passing_arbitrary_arguments
def function_with_named_arguments(a, b, c, platypus="Why not ?"):
    print("Do {0}, {1} and {2} like platypus? {3}".format(a, b, c, platypus))

function_with_named_arguments("Bill", "Linus", "Steve", platypus="Indeed!")
#outputs
#Do I have args ? :
#('Bill', 'Linus', 'Steve')
#{'platypus': 'Indeed!'}
#Do Bill, Linus and Steve like platypus? Indeed!

class Mary(object):

    def __init__(self):
        self.age = 31

    @a_decorator_passing_arbitrary_arguments
    def sayYourAge(self, lie=-3): # You can now add a default value
        print("I am {0}, what did you think?".format(self.age + lie))

m = Mary()
m.sayYourAge()
#outputs
# Do I have args?:
#(<__main__.Mary object at 0xb7d303ac>,)
#{}
#I am 28, what did you think?

Passer des arguments au décorateur

Génial, que diriez-vous de passer des arguments au décorateur lui-même?

Cela peut être quelque peu tordu, puisqu'un décorateur doit accepter une fonction comme argument. Par conséquent, vous ne pouvez pas transmettre les arguments de la fonction décorée directement au décorateur.

Avant de nous précipiter vers la solution, écrivons un petit rappel:

# Decorators are ORDINARY functions
def my_decorator(func):
    print("I am an ordinary function")
    def wrapper():
        print("I am function returned by the decorator")
        func()
    return wrapper

# Therefore, you can call it without any "@"

def lazy_function():
    print("zzzzzzzz")

decorated_function = my_decorator(lazy_function)
#outputs: I am an ordinary function

# It outputs "I am an ordinary function", because that’s just what you do:
# calling a function. Nothing magic.

@my_decorator
def lazy_function():
    print("zzzzzzzz")

#outputs: I am an ordinary function

C'est exactement pareil. " my_decorator " est appelé. Ainsi, lorsque vous @my_decorator , vous dites à Python d'appeler la fonction 'étiquetée par la variable " my_decorator "'.

C'est important! L'étiquette que vous donnez peut pointer directement vers le décorateur - ou non .

Faisons le mal. ☺

def decorator_maker():

    print("I make decorators! I am executed only once: "
          "when you make me create a decorator.")

    def my_decorator(func):

        print("I am a decorator! I am executed only when you decorate a function.")

        def wrapped():
            print("I am the wrapper around the decorated function. "
                  "I am called when you call the decorated function. "
                  "As the wrapper, I return the RESULT of the decorated function.")
            return func()

        print("As the decorator, I return the wrapped function.")

        return wrapped

    print("As a decorator maker, I return a decorator")
    return my_decorator

# Let’s create a decorator. It’s just a new function after all.
new_decorator = decorator_maker()       
#outputs:
#I make decorators! I am executed only once: when you make me create a decorator.
#As a decorator maker, I return a decorator

# Then we decorate the function

def decorated_function():
    print("I am the decorated function.")

decorated_function = new_decorator(decorated_function)
#outputs:
#I am a decorator! I am executed only when you decorate a function.
#As the decorator, I return the wrapped function

# Let’s call the function:
decorated_function()
#outputs:
#I am the wrapper around the decorated function. I am called when you call the decorated function.
#As the wrapper, I return the RESULT of the decorated function.
#I am the decorated function.

Pas de surprise ici.

Faisons EXACTEMENT la même chose, mais sautons toutes les variables intermédiaires embêtantes:

def decorated_function():
    print("I am the decorated function.")
decorated_function = decorator_maker()(decorated_function)
#outputs:
#I make decorators! I am executed only once: when you make me create a decorator.
#As a decorator maker, I return a decorator
#I am a decorator! I am executed only when you decorate a function.
#As the decorator, I return the wrapped function.

# Finally:
decorated_function()    
#outputs:
#I am the wrapper around the decorated function. I am called when you call the decorated function.
#As the wrapper, I return the RESULT of the decorated function.
#I am the decorated function.

Faisons encore plus court :

@decorator_maker()
def decorated_function():
    print("I am the decorated function.")
#outputs:
#I make decorators! I am executed only once: when you make me create a decorator.
#As a decorator maker, I return a decorator
#I am a decorator! I am executed only when you decorate a function.
#As the decorator, I return the wrapped function.

#Eventually: 
decorated_function()    
#outputs:
#I am the wrapper around the decorated function. I am called when you call the decorated function.
#As the wrapper, I return the RESULT of the decorated function.
#I am the decorated function.

Hé, tu as vu ça? Nous avons utilisé un appel de fonction avec la syntaxe " @ "! :-)

Revenons donc aux décorateurs avec des arguments. Si nous pouvons utiliser des fonctions pour générer le décorateur à la volée, nous pouvons passer des arguments à cette fonction, non?

def decorator_maker_with_arguments(decorator_arg1, decorator_arg2):

    print("I make decorators! And I accept arguments: {0}, {1}".format(decorator_arg1, decorator_arg2))

    def my_decorator(func):
        # The ability to pass arguments here is a gift from closures.
        # If you are not comfortable with closures, you can assume it’s ok,
        # or read: https://.com/questions/13857/can-you-explain-closures-as-they-relate-to-python
        print("I am the decorator. Somehow you passed me arguments: {0}, {1}".format(decorator_arg1, decorator_arg2))

        # Don't confuse decorator arguments and function arguments!
        def wrapped(function_arg1, function_arg2) :
            print("I am the wrapper around the decorated function.\n"
                  "I can access all the variables\n"
                  "\t- from the decorator: {0} {1}\n"
                  "\t- from the function call: {2} {3}\n"
                  "Then I can pass them to the decorated function"
                  .format(decorator_arg1, decorator_arg2,
                          function_arg1, function_arg2))
            return func(function_arg1, function_arg2)

        return wrapped

    return my_decorator

@decorator_maker_with_arguments("Leonard", "Sheldon")
def decorated_function_with_arguments(function_arg1, function_arg2):
    print("I am the decorated function and only knows about my arguments: {0}"
           " {1}".format(function_arg1, function_arg2))

decorated_function_with_arguments("Rajesh", "Howard")
#outputs:
#I make decorators! And I accept arguments: Leonard Sheldon
#I am the decorator. Somehow you passed me arguments: Leonard Sheldon
#I am the wrapper around the decorated function. 
#I can access all the variables 
#   - from the decorator: Leonard Sheldon 
#   - from the function call: Rajesh Howard 
#Then I can pass them to the decorated function
#I am the decorated function and only knows about my arguments: Rajesh Howard

La voici: une décoratrice avec des arguments. Les arguments peuvent être définis comme variable:

c1 = "Penny"
c2 = "Leslie"

@decorator_maker_with_arguments("Leonard", c1)
def decorated_function_with_arguments(function_arg1, function_arg2):
    print("I am the decorated function and only knows about my arguments:"
           " {0} {1}".format(function_arg1, function_arg2))

decorated_function_with_arguments(c2, "Howard")
#outputs:
#I make decorators! And I accept arguments: Leonard Penny
#I am the decorator. Somehow you passed me arguments: Leonard Penny
#I am the wrapper around the decorated function. 
#I can access all the variables 
#   - from the decorator: Leonard Penny 
#   - from the function call: Leslie Howard 
#Then I can pass them to the decorated function
#I am the decorated function and only know about my arguments: Leslie Howard

Comme vous pouvez le constater, vous pouvez transmettre des arguments au décorateur, comme toute fonction utilisant cette astuce. Vous pouvez même utiliser *args, **kwargs si vous le souhaitez. Mais rappelez-vous que les décorateurs ne s'appellent qu'une fois . Juste au moment où Python importe le script. Vous ne pouvez pas définir dynamiquement les arguments par la suite. Quand vous faites "importer x", la fonction est déjà décorée , vous ne pouvez donc rien changer.

Pratiquons: décorer un décorateur

Bon, en bonus, je vais vous donner un extrait pour que tout décorateur accepte généralement tout argument. Après tout, pour accepter les arguments, nous avons créé notre décorateur en utilisant une autre fonction.

Nous avons emballé le décorateur.

Quelque chose d'autre que nous avons vu récemment cette fonction enveloppée?

Oh oui, décorateurs!

Amusons-nous et écrivons un décorateur pour les décorateurs:

def decorator_with_args(decorator_to_enhance):
    """ 
    This function is supposed to be used as a decorator.
    It must decorate an other function, that is intended to be used as a decorator.
    Take a cup of coffee.
    It will allow any decorator to accept an arbitrary number of arguments,
    saving you the headache to remember how to do that every time.
    """

    # We use the same trick we did to pass arguments
    def decorator_maker(*args, **kwargs):

        # We create on the fly a decorator that accepts only a function
        # but keeps the passed arguments from the maker.
        def decorator_wrapper(func):

            # We return the result of the original decorator, which, after all, 
            # IS JUST AN ORDINARY FUNCTION (which returns a function).
            # Only pitfall: the decorator must have this specific signature or it won't work:
            return decorator_to_enhance(func, *args, **kwargs)

        return decorator_wrapper

    return decorator_maker

Il peut être utilisé comme suit:

# You create the function you will use as a decorator. And stick a decorator on it :-)
# Don't forget, the signature is "decorator(func, *args, **kwargs)"
@decorator_with_args 
def decorated_decorator(func, *args, **kwargs): 
    def wrapper(function_arg1, function_arg2):
        print("Decorated with {0} {1}".format(args, kwargs))
        return func(function_arg1, function_arg2)
    return wrapper

# Then you decorate the functions you wish with your brand new decorated decorator.

@decorated_decorator(42, 404, 1024)
def decorated_function(function_arg1, function_arg2):
    print("Hello {0} {1}".format(function_arg1, function_arg2))

decorated_function("Universe and", "everything")
#outputs:
#Decorated with (42, 404, 1024) {}
#Hello Universe and everything

# Whoooot!

Je sais que la dernière fois que vous avez eu ce sentiment, c’était après avoir entendu un type qui disait: "avant de comprendre la récursion, vous devez d’abord comprendre la récursion". Mais maintenant, vous ne vous sentez pas bien de maîtriser cela?

Meilleures pratiques: décorateurs

  • Les décorateurs ont été introduits dans Python 2.4, assurez-vous donc que votre code sera exécuté sur> = 2.4.
  • Les décorateurs ralentissent l'appel de fonction. Garde cela à l'esprit.
  • Vous ne pouvez pas décorer une fonction. (Il existe des astuces pour créer des décorateurs qui peuvent être supprimés, mais personne ne les utilise.) Ainsi, une fonction décorée est décorée pour tout le code .
  • Les décorateurs encapsulent les fonctions, ce qui peut les rendre difficiles à déboguer. (Cela s'améliore avec Python> = 2.5; voir ci-dessous.)

Le module functools été introduit dans Python 2.5. Il inclut la fonction functools.wraps() , qui copie le nom, le module et la docstring de la fonction décorée dans son wrapper.

(Fait amusant: functools.wraps() est un décorateur!)

# For debugging, the stacktrace prints you the function __name__
def foo():
    print("foo")

print(foo.__name__)
#outputs: foo

# With a decorator, it gets messy    
def bar(func):
    def wrapper():
        print("bar")
        return func()
    return wrapper

@bar
def foo():
    print("foo")

print(foo.__name__)
#outputs: wrapper

# "functools" can help for that

import functools

def bar(func):
    # We say that "wrapper", is wrapping "func"
    # and the magic begins
    @functools.wraps(func)
    def wrapper():
        print("bar")
        return func()
    return wrapper

@bar
def foo():
    print("foo")

print(foo.__name__)
#outputs: foo

Comment les décorateurs peuvent-ils être utiles?

Maintenant la grande question: à quoi puis-je utiliser les décorateurs?

Semble cool et puissant, mais un exemple pratique serait génial. Eh bien, il y a 1000 possibilités. Les utilisations classiques étendent un comportement de fonction depuis une bibliothèque externe (vous ne pouvez pas le modifier), ou pour le débogage (vous ne voulez pas le modifier car il est temporaire).

Vous pouvez les utiliser pour étendre plusieurs fonctions de manière DRY, comme ceci:

def benchmark(func):
    """
    A decorator that prints the time a function takes
    to execute.
    """
    import time
    def wrapper(*args, **kwargs):
        t = time.clock()
        res = func(*args, **kwargs)
        print("{0} {1}".format(func.__name__, time.clock()-t))
        return res
    return wrapper


def logging(func):
    """
    A decorator that logs the activity of the script.
    (it actually just prints it, but it could be logging!)
    """
    def wrapper(*args, **kwargs):
        res = func(*args, **kwargs)
        print("{0} {1} {2}".format(func.__name__, args, kwargs))
        return res
    return wrapper


def counter(func):
    """
    A decorator that counts and prints the number of times a function has been executed
    """
    def wrapper(*args, **kwargs):
        wrapper.count = wrapper.count + 1
        res = func(*args, **kwargs)
        print("{0} has been used: {1}x".format(func.__name__, wrapper.count))
        return res
    wrapper.count = 0
    return wrapper

@counter
@benchmark
@logging
def reverse_string(string):
    return str(reversed(string))

print(reverse_string("Able was I ere I saw Elba"))
print(reverse_string("A man, a plan, a canoe, pasta, heros, rajahs, a coloratura, maps, snipe, percale, macaroni, a gag, a banana bag, a tan, a tag, a banana bag again (or a camel), a crepe, pins, Spam, a rut, a Rolo, cash, a jar, sore hats, a peon, a canal: Panama!"))

#outputs:
#reverse_string ('Able was I ere I saw Elba',) {}
#wrapper 0.0
#wrapper has been used: 1x 
#ablE was I ere I saw elbA
#reverse_string ('A man, a plan, a canoe, pasta, heros, rajahs, a coloratura, maps, snipe, percale, macaroni, a gag, a banana bag, a tan, a tag, a banana bag again (or a camel), a crepe, pins, Spam, a rut, a Rolo, cash, a jar, sore hats, a peon, a canal: Panama!',) {}
#wrapper 0.0
#wrapper has been used: 2x
#!amanaP :lanac a ,noep a ,stah eros ,raj a ,hsac ,oloR a ,tur a ,mapS ,snip ,eperc a ,)lemac a ro( niaga gab ananab a ,gat a ,nat a ,gab ananab a ,gag a ,inoracam ,elacrep ,epins ,spam ,arutaroloc a ,shajar ,soreh ,atsap ,eonac a ,nalp a ,nam A

Bien sûr, l’avantage des décorateurs est que vous pouvez les utiliser immédiatement sur presque tout sans réécrire. SEC, j'ai dit:

@counter
@benchmark
@logging
def get_random_futurama_quote():
    from urllib import urlopen
    result = urlopen("http://subfusion.net/cgi-bin/quote.pl?quote=futurama").read()
    try:
        value = result.split("<br><b><hr><br>")[1].split("<br><br><hr>")[0]
        return value.strip()
    except:
        return "No, I'm ... doesn't!"


print(get_random_futurama_quote())
print(get_random_futurama_quote())

#outputs:
#get_random_futurama_quote () {}
#wrapper 0.02
#wrapper has been used: 1x
#The laws of science be a harsh mistress.
#get_random_futurama_quote () {}
#wrapper 0.01
#wrapper has been used: 2x
#Curse you, merciful Poseidon!

Python lui-même fournit plusieurs décorateurs: property , staticmethod , etc.

  • Django utilise des décorateurs pour gérer la mise en cache et afficher les autorisations.
  • Twisted pour simuler les appels de fonctions asynchrones en ligne.

C'est vraiment un grand terrain de jeu.


Vous pouvez également écrire une fonction d'usine qui renvoie un décorateur qui enveloppe la valeur de retour de la fonction décorée dans une balise transmise à la fonction d'usine. Par exemple:

from functools import wraps

def wrap_in_tag(tag):
    def factory(func):
        @wraps(func)
        def decorator():
            return '<%(tag)s>%(rv)s</%(tag)s>' % (
                {'tag': tag, 'rv': func()})
        return decorator
    return factory

Cela vous permet d'écrire:

@wrap_in_tag('b')
@wrap_in_tag('i')
def say():
    return 'hello'

ou

makebold = wrap_in_tag('b')
makeitalic = wrap_in_tag('i')

@makebold
@makeitalic
def say():
    return 'hello'

Personnellement j'aurais écrit le décorateur un peu différemment:

from functools import wraps

def wrap_in_tag(tag):
    def factory(func):
        @wraps(func)
        def decorator(val):
            return func('<%(tag)s>%(val)s</%(tag)s>' %
                        {'tag': tag, 'val': val})
        return decorator
    return factory

qui donnerait:

@wrap_in_tag('b')
@wrap_in_tag('i')
def say(val):
    return val
say('hello')

N'oubliez pas la construction pour laquelle la syntaxe de décorateur est un raccourci:

say = wrap_in_tag('b')(wrap_in_tag('i')(say)))

On a longtemps répondu à cette réponse, mais je pensais partager mon cours de décorateur, ce qui rend l’écriture de nouveaux décorateurs facile et compacte.

from abc import ABCMeta, abstractclassmethod

class Decorator(metaclass=ABCMeta):
    """ Acts as a base class for all decorators """

    def __init__(self):
        self.method = None

    def __call__(self, method):
        self.method = method
        return self.call

    @abstractclassmethod
    def call(self, *args, **kwargs):
        return self.method(*args, **kwargs)

D'une part, je pense que cela clarifie le comportement des décorateurs, mais cela permet également de définir les nouveaux décorateurs de manière très concise. Pour l'exemple cité ci-dessus, vous pouvez alors le résoudre comme suit:

class MakeBold(Decorator):
    def call():
        return "<b>" + self.method() + "</b>"

class MakeItalic(Decorator):
    def call():
        return "<i>" + self.method() + "</i>"

@MakeBold()
@MakeItalic()
def say():
   return "Hello"

Vous pouvez également l'utiliser pour effectuer des tâches plus complexes, comme par exemple un décorateur qui applique automatiquement la fonction de manière récursive à tous les arguments d'un itérateur:

class ApplyRecursive(Decorator):
    def __init__(self, *types):
        super().__init__()
        if not len(types):
            types = (dict, list, tuple, set)
        self._types = types

    def call(self, arg):
        if dict in self._types and isinstance(arg, dict):
            return {key: self.call(value) for key, value in arg.items()}

        if set in self._types and isinstance(arg, set):
            return set(self.call(value) for value in arg)

        if tuple in self._types and isinstance(arg, tuple):
            return tuple(self.call(value) for value in arg)

        if list in self._types and isinstance(arg, list):
            return list(self.call(value) for value in arg)

        return self.method(arg)


@ApplyRecursive(tuple, set, dict)
def double(arg):
    return 2*arg

print(double(1))
print(double({'a': 1, 'b': 2}))
print(double({1, 2, 3}))
print(double((1, 2, 3, 4)))
print(double([1, 2, 3, 4, 5]))

Quelles impressions:

2
{'a': 2, 'b': 4}
{2, 4, 6}
(2, 4, 6, 8)
[1, 2, 3, 4, 5, 1, 2, 3, 4, 5]

Notez que cet exemple n'inclut pas le listtype dans l'instanciation du décorateur. Ainsi, dans la dernière instruction print, la méthode est appliquée à la liste elle-même, pas aux éléments de la liste.


Pour expliquer le décorateur de manière plus simple:

Avec:

@decor1
@decor2
def func(*args, **kwargs):
    pass

Quand est-ce que:

func(*args, **kwargs)

Vous faites vraiment:

decor1(decor2(func))(*args, **kwargs)

Une autre façon de faire la même chose:

class bol(object):
  def __init__(self, f):
    self.f = f
  def __call__(self):
    return "<b>{}</b>".format(self.f())

class ita(object):
  def __init__(self, f):
    self.f = f
  def __call__(self):
    return "<i>{}</i>".format(self.f())

@bol
@ita
def sayhi():
  return 'hi'

Ou, de manière plus flexible:

class sty(object):
  def __init__(self, tag):
    self.tag = tag
  def __call__(self, f):
    def newf():
      return "<{tag}>{res}</{tag}>".format(res=f(), tag=self.tag)
    return newf

@sty('b')
@sty('i')
def sayhi():
  return 'hi'

Voici un exemple simple d'enchaînement de décorateurs. Notez la dernière ligne - elle montre ce qui se passe sous les couvertures.

############################################################
#
#    decorators
#
############################################################

def bold(fn):
    def decorate():
        # surround with bold tags before calling original function
        return "<b>" + fn() + "</b>"
    return decorate


def uk(fn):
    def decorate():
        # swap month and day
        fields = fn().split('/')
        date = fields[1] + "/" + fields[0] + "/" + fields[2]
        return date
    return decorate

import datetime
def getDate():
    now = datetime.datetime.now()
    return "%d/%d/%d" % (now.day, now.month, now.year)

@bold
def getBoldDate(): 
    return getDate()

@uk
def getUkDate():
    return getDate()

@bold
@uk
def getBoldUkDate():
    return getDate()


print getDate()
print getBoldDate()
print getUkDate()
print getBoldUkDate()
# what is happening under the covers
print bold(uk(getDate))()

La sortie ressemble à:

17/6/2013
<b>17/6/2013</b>
6/17/2013
<b>6/17/2013</b>
<b>6/17/2013</b>

#decorator.py
def makeHtmlTag(tag, *args, **kwds):
    def real_decorator(fn):
        css_class = " class='{0}'".format(kwds["css_class"]) \
                                 if "css_class" in kwds else ""
        def wrapped(*args, **kwds):
            return "<"+tag+css_class+">" + fn(*args, **kwds) + "</"+tag+">"
        return wrapped
    # return decorator dont call it
    return real_decorator

@makeHtmlTag(tag="b", css_class="bold_css")
@makeHtmlTag(tag="i", css_class="italic_css")
def hello():
    return "hello world"

print hello()

Vous pouvez également écrire décorateur en classe

#class.py
class makeHtmlTagClass(object):
    def __init__(self, tag, css_class=""):
        self._tag = tag
        self._css_class = " class='{0}'".format(css_class) \
                                       if css_class != "" else ""

    def __call__(self, fn):
        def wrapped(*args, **kwargs):
            return "<" + self._tag + self._css_class+">"  \
                       + fn(*args, **kwargs) + "</" + self._tag + ">"
        return wrapped

@makeHtmlTagClass(tag="b", css_class="bold_css")
@makeHtmlTagClass(tag="i", css_class="italic_css")
def hello(name):
    return "Hello, {}".format(name)

print hello("Your name")




python-decorators