tag - in frame html




Come unire(unire) i frame di dati(interno, esterno, sinistro, destro)? (9)

  1. Usando la mergefunzione possiamo selezionare la variabile della tabella sinistra o della tabella destra, allo stesso modo come tutti noi abbiamo familiarità con l'istruzione select in SQL (EX: selezionare a. * ... o Seleziona b. * Da .....)
  2. Dobbiamo aggiungere un codice aggiuntivo che verrà sostituito dalla tabella appena unita.

    • SQL: - select a.* from df1 a inner join df2 b on a.CustomerId=b.CustomerId

    • R: - merge(df1, df2, by.x = "CustomerId", by.y = "CustomerId")[,names(df1)]

Stessa strada

  • SQL: - select b.* from df1 a inner join df2 b on a.CustomerId=b.CustomerId

  • R: - merge(df1, df2, by.x = "CustomerId", by.y = "CustomerId")[,names(df2)]

Dati due frame di dati:

df1 = data.frame(CustomerId = c(1:6), Product = c(rep("Toaster", 3), rep("Radio", 3)))
df2 = data.frame(CustomerId = c(2, 4, 6), State = c(rep("Alabama", 2), rep("Ohio", 1)))

df1
#  CustomerId Product
#           1 Toaster
#           2 Toaster
#           3 Toaster
#           4   Radio
#           5   Radio
#           6   Radio

df2
#  CustomerId   State
#           2 Alabama
#           4 Alabama
#           6    Ohio

Come posso creare uno stile di database, ad esempio, stile sql, join ? Cioè, come ottengo:

  • Un join interno di df1 e df2 :
    Restituisce solo le righe in cui la tabella sinistra ha le chiavi corrispondenti nella tabella corretta.
  • Un join esterno di df1 e df2 :
    Restituisce tutte le righe da entrambe le tabelle, unisce i record da sinistra che hanno le chiavi corrispondenti nella tabella giusta.
  • Un join esterno sinistro (o semplicemente left join) di df1 e df2
    Restituisce tutte le righe dalla tabella di sinistra e tutte le righe con le chiavi corrispondenti dalla tabella di destra.
  • df1 esterna destra di df1 e df2
    Restituisce tutte le righe dalla tabella di destra e tutte le righe con le chiavi corrispondenti dalla tabella sinistra.

Credito extra:

Come posso fare una dichiarazione di selezione stile SQL?


Aggiornamento sui metodi data.table per l'unione di dataset. Vedi sotto esempi per ogni tipo di join. Ci sono due metodi, uno da [.data.table quando si passa il secondo data.table come primo argomento al sottoinsieme, un altro modo è usare la funzione di merge che viene inviata al metodo data.table veloce.

Aggiornamento del 2016-04-01 - e non è uno scherzo di April Fools!
Nella versione 1.9.7 dei join di data.table è ora possibile utilizzare l'indice esistente che riduce enormemente i tempi di un join. Sotto codice e benchmark NON si utilizzano gli indici data.table su join . Se stai cercando un join in tempo reale, dovresti usare gli indici data.table.

df1 = data.frame(CustomerId = c(1:6), Product = c(rep("Toaster", 3), rep("Radio", 3)))
df2 = data.frame(CustomerId = c(2L, 4L, 7L), State = c(rep("Alabama", 2), rep("Ohio", 1))) # one value changed to show full outer join

library(data.table)

dt1 = as.data.table(df1)
dt2 = as.data.table(df2)
setkey(dt1, CustomerId)
setkey(dt2, CustomerId)
# right outer join keyed data.tables
dt1[dt2]

setkey(dt1, NULL)
setkey(dt2, NULL)
# right outer join unkeyed data.tables - use `on` argument
dt1[dt2, on = "CustomerId"]

# left outer join - swap dt1 with dt2
dt2[dt1, on = "CustomerId"]

# inner join - use `nomatch` argument
dt1[dt2, nomatch=0L, on = "CustomerId"]

# anti join - use `!` operator
dt1[!dt2, on = "CustomerId"]

# inner join
merge(dt1, dt2, by = "CustomerId")

# full outer join
merge(dt1, dt2, by = "CustomerId", all = TRUE)

# see ?merge.data.table arguments for other cases

Sotto test di benchmark base R, sqldf, dplyr e data.table.
Benchmark testa i set di dati non digitati / non indicizzati. È possibile ottenere prestazioni ancora migliori se si utilizzano chiavi su dati.tables o indici con sqldf. Base R e dplyr non hanno indici o chiavi quindi non ho incluso quello scenario nel benchmark.
Benchmark viene eseguito su set di dati 5M-1, ci sono valori comuni 5M-2 sulla colonna join in modo che ogni scenario (sinistro, destro, completo, interno) possa essere testato e join non sia ancora banale da eseguire.

library(microbenchmark)
library(sqldf)
library(dplyr)
library(data.table)

n = 5e6
set.seed(123)
df1 = data.frame(x=sample(n,n-1L), y1=rnorm(n-1L))
df2 = data.frame(x=sample(n,n-1L), y2=rnorm(n-1L))
dt1 = as.data.table(df1)
dt2 = as.data.table(df2)

# inner join
microbenchmark(times = 10L,
               base = merge(df1, df2, by = "x"),
               sqldf = sqldf("SELECT * FROM df1 INNER JOIN df2 ON df1.x = df2.x"),
               dplyr = inner_join(df1, df2, by = "x"),
               data.table = dt1[dt2, nomatch = 0L, on = "x"])
#Unit: milliseconds
#       expr        min         lq      mean     median        uq       max neval
#       base 15546.0097 16083.4915 16687.117 16539.0148 17388.290 18513.216    10
#      sqldf 44392.6685 44709.7128 45096.401 45067.7461 45504.376 45563.472    10
#      dplyr  4124.0068  4248.7758  4281.122  4272.3619  4342.829  4411.388    10
# data.table   937.2461   946.0227  1053.411   973.0805  1214.300  1281.958    10

# left outer join
microbenchmark(times = 10L,
               base = merge(df1, df2, by = "x", all.x = TRUE),
               sqldf = sqldf("SELECT * FROM df1 LEFT OUTER JOIN df2 ON df1.x = df2.x"),
               dplyr = left_join(df1, df2, by = c("x"="x")),
               data.table = dt2[dt1, on = "x"])
#Unit: milliseconds
#       expr       min         lq       mean     median         uq       max neval
#       base 16140.791 17107.7366 17441.9538 17414.6263 17821.9035 19453.034    10
#      sqldf 43656.633 44141.9186 44777.1872 44498.7191 45288.7406 47108.900    10
#      dplyr  4062.153  4352.8021  4780.3221  4409.1186  4450.9301  8385.050    10
# data.table   823.218   823.5557   901.0383   837.9206   883.3292  1277.239    10

# right outer join
microbenchmark(times = 10L,
               base = merge(df1, df2, by = "x", all.y = TRUE),
               sqldf = sqldf("SELECT * FROM df2 LEFT OUTER JOIN df1 ON df2.x = df1.x"),
               dplyr = right_join(df1, df2, by = "x"),
               data.table = dt1[dt2, on = "x"])
#Unit: milliseconds
#       expr        min         lq       mean     median        uq       max neval
#       base 15821.3351 15954.9927 16347.3093 16044.3500 16621.887 17604.794    10
#      sqldf 43635.5308 43761.3532 43984.3682 43969.0081 44044.461 44499.891    10
#      dplyr  3936.0329  4028.1239  4102.4167  4045.0854  4219.958  4307.350    10
# data.table   820.8535   835.9101   918.5243   887.0207  1005.721  1068.919    10

# full outer join
microbenchmark(times = 10L,
               base = merge(df1, df2, by = "x", all = TRUE),
               #sqldf = sqldf("SELECT * FROM df1 FULL OUTER JOIN df2 ON df1.x = df2.x"), # not supported
               dplyr = full_join(df1, df2, by = "x"),
               data.table = merge(dt1, dt2, by = "x", all = TRUE))
#Unit: seconds
#       expr       min        lq      mean    median        uq       max neval
#       base 16.176423 16.908908 17.485457 17.364857 18.271790 18.626762    10
#      dplyr  7.610498  7.666426  7.745850  7.710638  7.832125  7.951426    10
# data.table  2.052590  2.130317  2.352626  2.208913  2.470721  2.951948    10

Consiglierei di verificare il pacchetto sqldf di Gabor Grothendieck , che consente di esprimere queste operazioni in SQL.

library(sqldf)

## inner join
df3 <- sqldf("SELECT CustomerId, Product, State 
              FROM df1
              JOIN df2 USING(CustomerID)")

## left join (substitute 'right' for right join)
df4 <- sqldf("SELECT CustomerId, Product, State 
              FROM df1
              LEFT JOIN df2 USING(CustomerID)")

Trovo che la sintassi SQL sia più semplice e più naturale dell'equivalente R (ma questo può solo riflettere il mio pregiudizio RDBMS).

Vedi GaborHub GitHub di Gabor per ulteriori informazioni sui join.


Esiste l'approccio data.table per un join interno, che è molto efficiente in termini di tempo e memoria (e necessario per alcuni datafram più grandi):

library(data.table)

dt1 <- data.table(df1, key = "CustomerId") 
dt2 <- data.table(df2, key = "CustomerId")

joined.dt1.dt.2 <- dt1[dt2]

merge funziona anche su data.tables (dato che è generico e chiama merge.data.table )

merge(dt1, dt2)

data.table documentato su :
Come eseguire un'operazione di unione data.table
Traduzione di join SQL su chiavi esterne nella sintassi R data.table
Alternative efficienti da unire per i più grandi data.frames R
Come fare un join esterno sinistro di base con data.table in R?

Un'altra opzione è la funzione join trovata nel pacchetto plyr

library(plyr)

join(df1, df2,
     type = "inner")

#   CustomerId Product   State
# 1          2 Toaster Alabama
# 2          4   Radio Alabama
# 3          6   Radio    Ohio

Opzioni per type : inner , left , right , full .

Da ?join : diversamente merge , [ join ] conserva l'ordine di x indipendentemente dal tipo di join utilizzato.


Novità nel 2014:

Soprattutto se sei interessato anche alla manipolazione dei dati in generale (compresi l'ordinamento, il filtraggio, la subsetting, il riepilogo ecc.), Dovresti assolutamente dare un'occhiata a dplyr , che viene fornito con una varietà di funzioni tutte progettate per facilitare il tuo lavoro in particolare con i dati cornici e alcuni altri tipi di database. Offre anche un'interfaccia SQL piuttosto elaborata e persino una funzione per convertire (la maggior parte) codice SQL direttamente in R.

Le quattro funzioni relative al join nel pacchetto dplyr sono (per citare):

  • inner_join(x, y, by = NULL, copy = FALSE, ...) : restituisce tutte le righe da x dove ci sono valori corrispondenti in y, e tutte le colonne da xe y
  • left_join(x, y, by = NULL, copy = FALSE, ...) : restituisce tutte le righe da xe tutte le colonne da xe y
  • semi_join(x, y, by = NULL, copy = FALSE, ...) : restituisce tutte le righe da x dove ci sono valori corrispondenti in y, mantenendo solo le colonne da x.
  • anti_join(x, y, by = NULL, copy = FALSE, ...) : restituisce tutte le righe da x dove non ci sono valori corrispondenti in y, mantenendo solo le colonne da x

È tutto here in grande dettaglio.

La selezione delle colonne può essere effettuata select(df,"column") . Se questo non è abbastanza SQL per te, allora c'è la funzione sql() , in cui puoi inserire il codice SQL così com'è, e farà l'operazione che hai specificato proprio come stavi scrivendo in R tutti insieme (per maggiori informazioni , fare riferimento alla vignetta dplyr / databases ). Ad esempio, se applicato correttamente, sql("SELECT * FROM hflights") selezionerà tutte le colonne dalla tabella dplyr "hflights" (un "tbl").


Per il caso di un join sinistro con una cardinalità 0..*:0..1 o un join destro con una cardinalità 0..1:0..* è possibile assegnare sul posto le colonne unilaterali del joiner ( la tabella 0..1 ) direttamente sul joinee (la tabella 0..* ), evitando così la creazione di una tabella di dati completamente nuova. Ciò richiede la corrispondenza delle colonne chiave tra il joinee e il joiner e l'indicizzazione + ordinando di conseguenza le righe del joiner per l'assegnazione.

Se la chiave è una singola colonna, allora possiamo usare una singola chiamata per match() per fare la corrispondenza. Questo è il caso che tratterò in questa risposta.

Ecco un esempio basato sull'OP, tranne che ho aggiunto una riga in più a df2 con un id di 7 per verificare il caso di una chiave non corrispondente nel joiner. Questo è effettivamente df1 left join df2 :

df1 <- data.frame(CustomerId=1:6,Product=c(rep('Toaster',3L),rep('Radio',3L)));
df2 <- data.frame(CustomerId=c(2L,4L,6L,7L),State=c(rep('Alabama',2L),'Ohio','Texas'));
df1[names(df2)[-1L]] <- df2[match(df1[,1L],df2[,1L]),-1L];
df1;
##   CustomerId Product   State
## 1          1 Toaster    <NA>
## 2          2 Toaster Alabama
## 3          3 Toaster    <NA>
## 4          4   Radio Alabama
## 5          5   Radio    <NA>
## 6          6   Radio    Ohio

In quanto precede, ho supposto che la colonna chiave sia la prima colonna di entrambe le tabelle di input. Direi che, in generale, questa non è un'ipotesi irragionevole, dal momento che, se si dispone di un data.frame con una colonna chiave, sarebbe strano se non fosse stato impostato come prima colonna di data.frame da all'inizio. E puoi sempre riordinare le colonne per renderlo tale. Una conseguenza vantaggiosa di questa ipotesi è che il nome della colonna chiave non deve essere hardcoded, anche se suppongo che stia semplicemente sostituendo un assunto con un altro. La concisione è un altro vantaggio dell'indicizzazione di interi e della velocità. Nei benchmark riportati di seguito cambierò l'implementazione per utilizzare l'indicizzazione del nome della stringa in modo che corrisponda alle implementazioni concorrenti.

Penso che questa sia una soluzione particolarmente appropriata se si dispone di più tabelle che si desidera lasciare unite su un'unica tabella grande. Ricostruire ripetutamente l'intera tabella per ogni unione sarebbe inutile e inefficiente.

D'altra parte, se si desidera che il partecipante rimanga inalterato attraverso questa operazione per qualsiasi motivo, questa soluzione non può essere utilizzata, poiché modifica direttamente il partecipante. Anche se in tal caso potresti semplicemente fare una copia ed eseguire i compiti sul posto sulla copia.

Come nota a margine, ho esaminato brevemente le possibili soluzioni di corrispondenza per le chiavi a più colonne. Sfortunatamente, le uniche soluzioni di corrispondenza che ho trovato erano:

  • concatenazioni inefficienti. eg match(interaction(df1$a,df1$b),interaction(df2$a,df2$b)) , o la stessa idea con paste() .
  • congiunzioni cartesiane inefficienti, ad esempio outer(df1$a,df2$a,`==`) & outer(df1$b,df2$b,`==`) .
  • base R merge() e equivalenti funzioni di unione basate sui pacchetti, che assegnano sempre una nuova tabella per restituire il risultato unito e quindi non sono adatte per una soluzione basata sul compito sul posto.

Ad esempio, vedere Corrispondenza di più colonne su diversi frame di dati e ottenere un'altra colonna come risultato , abbinare due colonne con altre due colonne , Corrispondenza su più colonne e il duplicato di questa domanda in cui inizialmente ho trovato la soluzione sul posto, Combina due frame di dati con diverso numero di righe in R.

Benchmarking

Ho deciso di fare il mio benchmark per vedere come l'approccio di assegnazione sul posto si confronta con le altre soluzioni che sono state offerte in questa domanda.

Codice di prova:

library(microbenchmark);
library(data.table);
library(sqldf);
library(plyr);
library(dplyr);

solSpecs <- list(
    merge=list(testFuncs=list(
        inner=function(df1,df2,key) merge(df1,df2,key),
        left =function(df1,df2,key) merge(df1,df2,key,all.x=T),
        right=function(df1,df2,key) merge(df1,df2,key,all.y=T),
        full =function(df1,df2,key) merge(df1,df2,key,all=T)
    )),
    data.table.unkeyed=list(argSpec='data.table.unkeyed',testFuncs=list(
        inner=function(dt1,dt2,key) dt1[dt2,on=key,nomatch=0L,allow.cartesian=T],
        left =function(dt1,dt2,key) dt2[dt1,on=key,allow.cartesian=T],
        right=function(dt1,dt2,key) dt1[dt2,on=key,allow.cartesian=T],
        full =function(dt1,dt2,key) merge(dt1,dt2,key,all=T,allow.cartesian=T) ## calls merge.data.table()
    )),
    data.table.keyed=list(argSpec='data.table.keyed',testFuncs=list(
        inner=function(dt1,dt2) dt1[dt2,nomatch=0L,allow.cartesian=T],
        left =function(dt1,dt2) dt2[dt1,allow.cartesian=T],
        right=function(dt1,dt2) dt1[dt2,allow.cartesian=T],
        full =function(dt1,dt2) merge(dt1,dt2,all=T,allow.cartesian=T) ## calls merge.data.table()
    )),
    sqldf.unindexed=list(testFuncs=list( ## note: must pass connection=NULL to avoid running against the live DB connection, which would result in collisions with the residual tables from the last query upload
        inner=function(df1,df2,key) sqldf(paste0('select * from df1 inner join df2 using(',paste(collapse=',',key),')'),connection=NULL),
        left =function(df1,df2,key) sqldf(paste0('select * from df1 left join df2 using(',paste(collapse=',',key),')'),connection=NULL),
        right=function(df1,df2,key) sqldf(paste0('select * from df2 left join df1 using(',paste(collapse=',',key),')'),connection=NULL) ## can't do right join proper, not yet supported; inverted left join is equivalent
        ##full =function(df1,df2,key) sqldf(paste0('select * from df1 full join df2 using(',paste(collapse=',',key),')'),connection=NULL) ## can't do full join proper, not yet supported; possible to hack it with a union of left joins, but too unreasonable to include in testing
    )),
    sqldf.indexed=list(testFuncs=list( ## important: requires an active DB connection with preindexed main.df1 and main.df2 ready to go; arguments are actually ignored
        inner=function(df1,df2,key) sqldf(paste0('select * from main.df1 inner join main.df2 using(',paste(collapse=',',key),')')),
        left =function(df1,df2,key) sqldf(paste0('select * from main.df1 left join main.df2 using(',paste(collapse=',',key),')')),
        right=function(df1,df2,key) sqldf(paste0('select * from main.df2 left join main.df1 using(',paste(collapse=',',key),')')) ## can't do right join proper, not yet supported; inverted left join is equivalent
        ##full =function(df1,df2,key) sqldf(paste0('select * from main.df1 full join main.df2 using(',paste(collapse=',',key),')')) ## can't do full join proper, not yet supported; possible to hack it with a union of left joins, but too unreasonable to include in testing
    )),
    plyr=list(testFuncs=list(
        inner=function(df1,df2,key) join(df1,df2,key,'inner'),
        left =function(df1,df2,key) join(df1,df2,key,'left'),
        right=function(df1,df2,key) join(df1,df2,key,'right'),
        full =function(df1,df2,key) join(df1,df2,key,'full')
    )),
    dplyr=list(testFuncs=list(
        inner=function(df1,df2,key) inner_join(df1,df2,key),
        left =function(df1,df2,key) left_join(df1,df2,key),
        right=function(df1,df2,key) right_join(df1,df2,key),
        full =function(df1,df2,key) full_join(df1,df2,key)
    )),
    in.place=list(testFuncs=list(
        left =function(df1,df2,key) { cns <- setdiff(names(df2),key); df1[cns] <- df2[match(df1[,key],df2[,key]),cns]; df1; },
        right=function(df1,df2,key) { cns <- setdiff(names(df1),key); df2[cns] <- df1[match(df2[,key],df1[,key]),cns]; df2; }
    ))
);

getSolTypes <- function() names(solSpecs);
getJoinTypes <- function() unique(unlist(lapply(solSpecs,function(x) names(x$testFuncs))));
getArgSpec <- function(argSpecs,key=NULL) if (is.null(key)) argSpecs$default else argSpecs[[key]];

initSqldf <- function() {
    sqldf(); ## creates sqlite connection on first run, cleans up and closes existing connection otherwise
    if (exists('sqldfInitFlag',envir=globalenv(),inherits=F) && sqldfInitFlag) { ## false only on first run
        sqldf(); ## creates a new connection
    } else {
        assign('sqldfInitFlag',T,envir=globalenv()); ## set to true for the one and only time
    }; ## end if
    invisible();
}; ## end initSqldf()

setUpBenchmarkCall <- function(argSpecs,joinType,solTypes=getSolTypes(),env=parent.frame()) {
    ## builds and returns a list of expressions suitable for passing to the list argument of microbenchmark(), and assigns variables to resolve symbol references in those expressions
    callExpressions <- list();
    nms <- character();
    for (solType in solTypes) {
        testFunc <- solSpecs[[solType]]$testFuncs[[joinType]];
        if (is.null(testFunc)) next; ## this join type is not defined for this solution type
        testFuncName <- paste0('tf.',solType);
        assign(testFuncName,testFunc,envir=env);
        argSpecKey <- solSpecs[[solType]]$argSpec;
        argSpec <- getArgSpec(argSpecs,argSpecKey);
        argList <- setNames(nm=names(argSpec$args),vector('list',length(argSpec$args)));
        for (i in seq_along(argSpec$args)) {
            argName <- paste0('tfa.',argSpecKey,i);
            assign(argName,argSpec$args[[i]],envir=env);
            argList[[i]] <- if (i%in%argSpec$copySpec) call('copy',as.symbol(argName)) else as.symbol(argName);
        }; ## end for
        callExpressions[[length(callExpressions)+1L]] <- do.call(call,c(list(testFuncName),argList),quote=T);
        nms[length(nms)+1L] <- solType;
    }; ## end for
    names(callExpressions) <- nms;
    callExpressions;
}; ## end setUpBenchmarkCall()

harmonize <- function(res) {
    res <- as.data.frame(res); ## coerce to data.frame
    for (ci in which(sapply(res,is.factor))) res[[ci]] <- as.character(res[[ci]]); ## coerce factor columns to character
    for (ci in which(sapply(res,is.logical))) res[[ci]] <- as.integer(res[[ci]]); ## coerce logical columns to integer (works around sqldf quirk of munging logicals to integers)
    ##for (ci in which(sapply(res,inherits,'POSIXct'))) res[[ci]] <- as.double(res[[ci]]); ## coerce POSIXct columns to double (works around sqldf quirk of losing POSIXct class) ----- POSIXct doesn't work at all in sqldf.indexed
    res <- res[order(names(res))]; ## order columns
    res <- res[do.call(order,res),]; ## order rows
    res;
}; ## end harmonize()

checkIdentical <- function(argSpecs,solTypes=getSolTypes()) {
    for (joinType in getJoinTypes()) {
        callExpressions <- setUpBenchmarkCall(argSpecs,joinType,solTypes);
        if (length(callExpressions)<2L) next;
        ex <- harmonize(eval(callExpressions[[1L]]));
        for (i in seq(2L,len=length(callExpressions)-1L)) {
            y <- harmonize(eval(callExpressions[[i]]));
            if (!isTRUE(all.equal(ex,y,check.attributes=F))) {
                ex <<- ex;
                y <<- y;
                solType <- names(callExpressions)[i];
                stop(paste0('non-identical: ',solType,' ',joinType,'.'));
            }; ## end if
        }; ## end for
    }; ## end for
    invisible();
}; ## end checkIdentical()

testJoinType <- function(argSpecs,joinType,solTypes=getSolTypes(),metric=NULL,times=100L) {
    callExpressions <- setUpBenchmarkCall(argSpecs,joinType,solTypes);
    bm <- microbenchmark(list=callExpressions,times=times);
    if (is.null(metric)) return(bm);
    bm <- summary(bm);
    res <- setNames(nm=names(callExpressions),bm[[metric]]);
    attr(res,'unit') <- attr(bm,'unit');
    res;
}; ## end testJoinType()

testAllJoinTypes <- function(argSpecs,solTypes=getSolTypes(),metric=NULL,times=100L) {
    joinTypes <- getJoinTypes();
    resList <- setNames(nm=joinTypes,lapply(joinTypes,function(joinType) testJoinType(argSpecs,joinType,solTypes,metric,times)));
    if (is.null(metric)) return(resList);
    units <- unname(unlist(lapply(resList,attr,'unit')));
    res <- do.call(data.frame,c(list(join=joinTypes),setNames(nm=solTypes,rep(list(rep(NA_real_,length(joinTypes))),length(solTypes))),list(unit=units,stringsAsFactors=F)));
    for (i in seq_along(resList)) res[i,match(names(resList[[i]]),names(res))] <- resList[[i]];
    res;
}; ## end testAllJoinTypes()

testGrid <- function(makeArgSpecsFunc,sizes,overlaps,solTypes=getSolTypes(),joinTypes=getJoinTypes(),metric='median',times=100L) {

    res <- expand.grid(size=sizes,overlap=overlaps,joinType=joinTypes,stringsAsFactors=F);
    res[solTypes] <- NA_real_;
    res$unit <- NA_character_;
    for (ri in seq_len(nrow(res))) {

        size <- res$size[ri];
        overlap <- res$overlap[ri];
        joinType <- res$joinType[ri];

        argSpecs <- makeArgSpecsFunc(size,overlap);

        checkIdentical(argSpecs,solTypes);

        cur <- testJoinType(argSpecs,joinType,solTypes,metric,times);
        res[ri,match(names(cur),names(res))] <- cur;
        res$unit[ri] <- attr(cur,'unit');

    }; ## end for

    res;

}; ## end testGrid()

Ecco un punto di riferimento dell'esempio basato sull'OP che ho dimostrato in precedenza:

## OP's example, supplemented with a non-matching row in df2
argSpecs <- list(
    default=list(copySpec=1:2,args=list(
        df1 <- data.frame(CustomerId=1:6,Product=c(rep('Toaster',3L),rep('Radio',3L))),
        df2 <- data.frame(CustomerId=c(2L,4L,6L,7L),State=c(rep('Alabama',2L),'Ohio','Texas')),
        'CustomerId'
    )),
    data.table.unkeyed=list(copySpec=1:2,args=list(
        as.data.table(df1),
        as.data.table(df2),
        'CustomerId'
    )),
    data.table.keyed=list(copySpec=1:2,args=list(
        setkey(as.data.table(df1),CustomerId),
        setkey(as.data.table(df2),CustomerId)
    ))
);
## prepare sqldf
initSqldf();
sqldf('create index df1_key on df1(CustomerId);'); ## upload and create an sqlite index on df1
sqldf('create index df2_key on df2(CustomerId);'); ## upload and create an sqlite index on df2

checkIdentical(argSpecs);

testAllJoinTypes(argSpecs,metric='median');
##    join    merge data.table.unkeyed data.table.keyed sqldf.unindexed sqldf.indexed      plyr    dplyr in.place         unit
## 1 inner  644.259           861.9345          923.516        9157.752      1580.390  959.2250 270.9190       NA microseconds
## 2  left  713.539           888.0205          910.045        8820.334      1529.714  968.4195 270.9185 224.3045 microseconds
## 3 right 1221.804           909.1900          923.944        8930.668      1533.135 1063.7860 269.8495 218.1035 microseconds
## 4  full 1302.203          3107.5380         3184.729              NA            NA 1593.6475 270.7055       NA microseconds

Qui ho benchmark su dati di input casuali, provando diverse scale e diversi pattern di sovrapposizione di tasti tra le due tabelle di input. Questo benchmark è ancora limitato al caso di una chiave intera a colonna singola. Inoltre, per garantire che la soluzione sul posto funzioni sia per i join di sinistra che di destra delle stesse tabelle, tutti i dati di test casuali utilizzano la 0..1:0..1cardinalità. Questo è implementato campionando senza sostituire la colonna chiave del primo data.frame quando si genera la colonna chiave del secondo data.frame.

makeArgSpecs.singleIntegerKey.optionalOneToOne <- function(size,overlap) {

    com <- as.integer(size*overlap);

    argSpecs <- list(
        default=list(copySpec=1:2,args=list(
            df1 <- data.frame(id=sample(size),y1=rnorm(size),y2=rnorm(size)),
            df2 <- data.frame(id=sample(c(if (com>0L) sample(df1$id,com) else integer(),seq(size+1L,len=size-com))),y3=rnorm(size),y4=rnorm(size)),
            'id'
        )),
        data.table.unkeyed=list(copySpec=1:2,args=list(
            as.data.table(df1),
            as.data.table(df2),
            'id'
        )),
        data.table.keyed=list(copySpec=1:2,args=list(
            setkey(as.data.table(df1),id),
            setkey(as.data.table(df2),id)
        ))
    );
    ## prepare sqldf
    initSqldf();
    sqldf('create index df1_key on df1(id);'); ## upload and create an sqlite index on df1
    sqldf('create index df2_key on df2(id);'); ## upload and create an sqlite index on df2

    argSpecs;

}; ## end makeArgSpecs.singleIntegerKey.optionalOneToOne()

## cross of various input sizes and key overlaps
sizes <- c(1e1L,1e3L,1e6L);
overlaps <- c(0.99,0.5,0.01);
system.time({ res <- testGrid(makeArgSpecs.singleIntegerKey.optionalOneToOne,sizes,overlaps); });
##     user   system  elapsed
## 22024.65 12308.63 34493.19

Ho scritto del codice per creare grafici di log-log dei risultati sopra. Ho generato un grafico separato per ogni percentuale di sovrapposizione. È un po 'ingombrante, ma mi piace avere tutti i tipi di soluzione e tipi di join rappresentati nella stessa trama.

Ho usato l'interpolazione spline per mostrare una curva uniforme per ogni combinazione di tipo soluzione / join, disegnata con simboli pch individuali. Il tipo di unione viene catturato dal simbolo pch, usando un punto per le parentesi angolari interne, sinistra e destra per sinistra e destra e un diamante per pieno. Il tipo di soluzione viene catturato dal colore come mostrato nella legenda.

plotRes <- function(res,titleFunc,useFloor=F) {
    solTypes <- setdiff(names(res),c('size','overlap','joinType','unit')); ## derive from res
    normMult <- c(microseconds=1e-3,milliseconds=1); ## normalize to milliseconds
    joinTypes <- getJoinTypes();
    cols <- c(merge='purple',data.table.unkeyed='blue',data.table.keyed='#00DDDD',sqldf.unindexed='brown',sqldf.indexed='orange',plyr='red',dplyr='#00BB00',in.place='magenta');
    pchs <- list(inner=20L,left='<',right='>',full=23L);
    cexs <- c(inner=0.7,left=1,right=1,full=0.7);
    NP <- 60L;
    ord <- order(decreasing=T,colMeans(res[res$size==max(res$size),solTypes],na.rm=T));
    ymajors <- data.frame(y=c(1,1e3),label=c('1ms','1s'),stringsAsFactors=F);
    for (overlap in unique(res$overlap)) {
        x1 <- res[res$overlap==overlap,];
        x1[solTypes] <- x1[solTypes]*normMult[x1$unit]; x1$unit <- NULL;
        xlim <- c(1e1,max(x1$size));
        xticks <- 10^seq(log10(xlim[1L]),log10(xlim[2L]));
        ylim <- c(1e-1,10^((if (useFloor) floor else ceiling)(log10(max(x1[solTypes],na.rm=T))))); ## use floor() to zoom in a little more, only sqldf.unindexed will break above, but xpd=NA will keep it visible
        yticks <- 10^seq(log10(ylim[1L]),log10(ylim[2L]));
        yticks.minor <- rep(yticks[-length(yticks)],each=9L)*1:9;
        plot(NA,xlim=xlim,ylim=ylim,xaxs='i',yaxs='i',axes=F,xlab='size (rows)',ylab='time (ms)',log='xy');
        abline(v=xticks,col='lightgrey');
        abline(h=yticks.minor,col='lightgrey',lty=3L);
        abline(h=yticks,col='lightgrey');
        axis(1L,xticks,parse(text=sprintf('10^%d',as.integer(log10(xticks)))));
        axis(2L,yticks,parse(text=sprintf('10^%d',as.integer(log10(yticks)))),las=1L);
        axis(4L,ymajors$y,ymajors$label,las=1L,tick=F,cex.axis=0.7,hadj=0.5);
        for (joinType in rev(joinTypes)) { ## reverse to draw full first, since it's larger and would be more obtrusive if drawn last
            x2 <- x1[x1$joinType==joinType,];
            for (solType in solTypes) {
                if (any(!is.na(x2[[solType]]))) {
                    xy <- spline(x2$size,x2[[solType]],xout=10^(seq(log10(x2$size[1L]),log10(x2$size[nrow(x2)]),len=NP)));
                    points(xy$x,xy$y,pch=pchs[[joinType]],col=cols[solType],cex=cexs[joinType],xpd=NA);
                }; ## end if
            }; ## end for
        }; ## end for
        ## custom legend
        ## due to logarithmic skew, must do all distance calcs in inches, and convert to user coords afterward
        ## the bottom-left corner of the legend will be defined in normalized figure coords, although we can convert to inches immediately
        leg.cex <- 0.7;
        leg.x.in <- grconvertX(0.275,'nfc','in');
        leg.y.in <- grconvertY(0.6,'nfc','in');
        leg.x.user <- grconvertX(leg.x.in,'in');
        leg.y.user <- grconvertY(leg.y.in,'in');
        leg.outpad.w.in <- 0.1;
        leg.outpad.h.in <- 0.1;
        leg.midpad.w.in <- 0.1;
        leg.midpad.h.in <- 0.1;
        leg.sol.w.in <- max(strwidth(solTypes,'in',leg.cex));
        leg.sol.h.in <- max(strheight(solTypes,'in',leg.cex))*1.5; ## multiplication factor for greater line height
        leg.join.w.in <- max(strheight(joinTypes,'in',leg.cex))*1.5; ## ditto
        leg.join.h.in <- max(strwidth(joinTypes,'in',leg.cex));
        leg.main.w.in <- leg.join.w.in*length(joinTypes);
        leg.main.h.in <- leg.sol.h.in*length(solTypes);
        leg.x2.user <- grconvertX(leg.x.in+leg.outpad.w.in*2+leg.main.w.in+leg.midpad.w.in+leg.sol.w.in,'in');
        leg.y2.user <- grconvertY(leg.y.in+leg.outpad.h.in*2+leg.main.h.in+leg.midpad.h.in+leg.join.h.in,'in');
        leg.cols.x.user <- grconvertX(leg.x.in+leg.outpad.w.in+leg.join.w.in*(0.5+seq(0L,length(joinTypes)-1L)),'in');
        leg.lines.y.user <- grconvertY(leg.y.in+leg.outpad.h.in+leg.main.h.in-leg.sol.h.in*(0.5+seq(0L,length(solTypes)-1L)),'in');
        leg.sol.x.user <- grconvertX(leg.x.in+leg.outpad.w.in+leg.main.w.in+leg.midpad.w.in,'in');
        leg.join.y.user <- grconvertY(leg.y.in+leg.outpad.h.in+leg.main.h.in+leg.midpad.h.in,'in');
        rect(leg.x.user,leg.y.user,leg.x2.user,leg.y2.user,col='white');
        text(leg.sol.x.user,leg.lines.y.user,solTypes[ord],cex=leg.cex,pos=4L,offset=0);
        text(leg.cols.x.user,leg.join.y.user,joinTypes,cex=leg.cex,pos=4L,offset=0,srt=90); ## srt rotation applies *after* pos/offset positioning
        for (i in seq_along(joinTypes)) {
            joinType <- joinTypes[i];
            points(rep(leg.cols.x.user[i],length(solTypes)),ifelse(colSums(!is.na(x1[x1$joinType==joinType,solTypes[ord]]))==0L,NA,leg.lines.y.user),pch=pchs[[joinType]],col=cols[solTypes[ord]]);
        }; ## end for
        title(titleFunc(overlap));
        readline(sprintf('overlap %.02f',overlap));
    }; ## end for
}; ## end plotRes()

titleFunc <- function(overlap) sprintf('R merge solutions: single-column integer key, 0..1:0..1 cardinality, %d%% overlap',as.integer(overlap*100));
plotRes(res,titleFunc,T);

Ecco un secondo benchmark su larga scala più gravoso per quanto riguarda il numero e il tipo di colonne chiave e la cardinalità. Per questo benchmark utilizzo tre colonne chiave: un carattere, un intero e uno logico, senza restrizioni sulla cardinalità (cioè, 0..*:0..*). (In generale non è consigliabile definire colonne chiave con valori doppi o complessi a causa di complicazioni di confronto in virgola mobile, e praticamente nessuno usa mai il tipo grezzo, tanto meno per le colonne chiave, quindi non ho incluso quei tipi nella chiave Inoltre, per motivi di informazione, inizialmente ho provato a utilizzare quattro colonne chiave includendo una colonna chiave POSIXct, ma il tipo POSIXct non ha giocato bene con la sqldf.indexedsoluzione per qualche motivo, probabilmente a causa di anomalie di confronto in virgola mobile, quindi rimosso.)

makeArgSpecs.assortedKey.optionalManyToMany <- function(size,overlap,uniquePct=75) {

    ## number of unique keys in df1
    u1Size <- as.integer(size*uniquePct/100);

    ## (roughly) divide u1Size into bases, so we can use expand.grid() to produce the required number of unique key values with repetitions within individual key columns
    ## use ceiling() to ensure we cover u1Size; will truncate afterward
    u1SizePerKeyColumn <- as.integer(ceiling(u1Size^(1/3)));

    ## generate the unique key values for df1
    keys1 <- expand.grid(stringsAsFactors=F,
        idCharacter=replicate(u1SizePerKeyColumn,paste(collapse='',sample(letters,sample(4:12,1L),T))),
        idInteger=sample(u1SizePerKeyColumn),
        idLogical=sample(c(F,T),u1SizePerKeyColumn,T)
        ##idPOSIXct=as.POSIXct('2016-01-01 00:00:00','UTC')+sample(u1SizePerKeyColumn)
    )[seq_len(u1Size),];

    ## rbind some repetitions of the unique keys; this will prepare one side of the many-to-many relationship
    ## also scramble the order afterward
    keys1 <- rbind(keys1,keys1[sample(nrow(keys1),size-u1Size,T),])[sample(size),];

    ## common and unilateral key counts
    com <- as.integer(size*overlap);
    uni <- size-com;

    ## generate some unilateral keys for df2 by synthesizing outside of the idInteger range of df1
    keys2 <- data.frame(stringsAsFactors=F,
        idCharacter=replicate(uni,paste(collapse='',sample(letters,sample(4:12,1L),T))),
        idInteger=u1SizePerKeyColumn+sample(uni),
        idLogical=sample(c(F,T),uni,T)
        ##idPOSIXct=as.POSIXct('2016-01-01 00:00:00','UTC')+u1SizePerKeyColumn+sample(uni)
    );

    ## rbind random keys from df1; this will complete the many-to-many relationship
    ## also scramble the order afterward
    keys2 <- rbind(keys2,keys1[sample(nrow(keys1),com,T),])[sample(size),];

    ##keyNames <- c('idCharacter','idInteger','idLogical','idPOSIXct');
    keyNames <- c('idCharacter','idInteger','idLogical');
    ## note: was going to use raw and complex type for two of the non-key columns, but data.table doesn't seem to fully support them
    argSpecs <- list(
        default=list(copySpec=1:2,args=list(
            df1 <- cbind(stringsAsFactors=F,keys1,y1=sample(c(F,T),size,T),y2=sample(size),y3=rnorm(size),y4=replicate(size,paste(collapse='',sample(letters,sample(4:12,1L),T)))),
            df2 <- cbind(stringsAsFactors=F,keys2,y5=sample(c(F,T),size,T),y6=sample(size),y7=rnorm(size),y8=replicate(size,paste(collapse='',sample(letters,sample(4:12,1L),T)))),
            keyNames
        )),
        data.table.unkeyed=list(copySpec=1:2,args=list(
            as.data.table(df1),
            as.data.table(df2),
            keyNames
        )),
        data.table.keyed=list(copySpec=1:2,args=list(
            setkeyv(as.data.table(df1),keyNames),
            setkeyv(as.data.table(df2),keyNames)
        ))
    );
    ## prepare sqldf
    initSqldf();
    sqldf(paste0('create index df1_key on df1(',paste(collapse=',',keyNames),');')); ## upload and create an sqlite index on df1
    sqldf(paste0('create index df2_key on df2(',paste(collapse=',',keyNames),');')); ## upload and create an sqlite index on df2

    argSpecs;

}; ## end makeArgSpecs.assortedKey.optionalManyToMany()

sizes <- c(1e1L,1e3L,1e5L); ## 1e5L instead of 1e6L to respect more heavy-duty inputs
overlaps <- c(0.99,0.5,0.01);
solTypes <- setdiff(getSolTypes(),'in.place');
system.time({ res <- testGrid(makeArgSpecs.assortedKey.optionalManyToMany,sizes,overlaps,solTypes); });
##     user   system  elapsed
## 38895.50   784.19 39745.53

I grafici risultanti, usando lo stesso codice di tracciatura sopra riportato:

titleFunc <- function(overlap) sprintf('R merge solutions: character/integer/logical key, 0..*:0..* cardinality, %d%% overlap',as.integer(overlap*100));
plotRes(res,titleFunc,F);


Utilizzando la funzione di merge e i suoi parametri facoltativi:

Inner join: merge(df1, df2) funzionerà per questi esempi perché R si unisce automaticamente ai frame con nomi di variabili comuni, ma molto probabilmente vorrai specificare l' merge(df1, df2, by = "CustomerId") per assicurarti che tu stavano abbinando solo i campi che desideravi. È inoltre possibile utilizzare i parametri by.x e by.y se le variabili corrispondenti hanno nomi diversi nei diversi frame di dati.

Join esterno: merge(x = df1, y = df2, by = "CustomerId", all = TRUE)

Sinistra esterna: merge(x = df1, y = df2, by = "CustomerId", all.x = TRUE)

Right outer: merge(x = df1, y = df2, by = "CustomerId", all.y = TRUE)

Cross join: merge(x = df1, y = df2, by = NULL)

Proprio come con il join interno, probabilmente vorrai passare esplicitamente "CustomerId" a R come variabile corrispondente. Penso che sia quasi sempre meglio indicare esplicitamente gli identificatori su cui si desidera unire; è più sicuro se l'input data.frames cambia in modo imprevisto e più facile da leggere in seguito.

È possibile unire su più colonne dando by un vettore, ad esempio by = c("CustomerId", "OrderId") .

Se i nomi delle colonne da unire non sono uguali, è possibile specificare, ad esempio, by.x = "CustomerId_in_df1", by.y = "CustomerId_in_df2" dove CustomerId_in_df1 è il nome della colonna nel primo frame di dati e CustomerId_in_df2 è il nome della colonna nel secondo frame di dati. (Questi possono anche essere vettori se è necessario unire su più colonne.)


dplyr a partire da 0.4 ha implementato tutti quei join incluso outer_join, ma valeva la pena notare che per i primi rilasci non si usava outer_join, e di conseguenza c'era un sacco di codice utente di hacking molto pessimo che galleggiava in giro per un po '( puoi ancora trovarlo nelle risposte SO e Kaggle di quel periodo).

Punti salienti della pubblicazione relativi all'unione :

v0.5 ( 6/2016 )

  • Gestione per tipo POSIXct, fusi orari, duplicati, diversi livelli di fattore. Migliori errori e avvertenze.
  • Nuovo argomento suffisso per controllare quali nomi di variabili duplicate suffisso ricevono (# 1296)

v0.4.0 (1/2015)

  • Implementa join destro e join esterno (# 96)
  • I join mutanti, che aggiungono nuove variabili a una tabella da righe corrispondenti in un'altra. Filtraggio dei join, che filtrano le osservazioni da una tabella in base alla corrispondenza o meno di un'osservazione nell'altra tabella.

v0.3 (10/2014)

  • Può ora left_join di diverse variabili in ogni tabella: df1%>% left_join (df2, c ("var1" = "var2"))

v0.2 (5/2014)

  • * _join () non riordina più i nomi delle colonne (# 324)

v0.1.3 (4/2014)

Soluzioni alternative per i commenti di hadley in questo numero:

  • right_join (x, y) è uguale a left_join (y, x) in termini di righe, solo le colonne saranno ordini diversi. Lavorato facilmente con select (new_column_order)
  • outer_join è fondamentalmente union (left_join (x, y), right_join (x, y)) - cioè preserva tutte le righe in entrambi i frame di dati.

Per un join interno su tutte le colonne, è possibile utilizzare anche fintersectdal pacchetto data.table o intersectdal pacchetto dplyr in alternativa mergesenza specificare le bycolonne. questo darà le file che sono uguali tra due dataframes:

merge(df1, df2)
#   V1 V2
# 1  B  2
# 2  C  3
dplyr::intersect(df1, df2)
#   V1 V2
# 1  B  2
# 2  C  3
data.table::fintersect(setDT(df1), setDT(df2))
#    V1 V2
# 1:  B  2
# 2:  C  3

Dati di esempio:

df1 <- data.frame(V1 = LETTERS[1:4], V2 = 1:4)
df2 <- data.frame(V1 = LETTERS[2:3], V2 = 2:3)




r-faq