r - 깔끔한 두 열 데이터 프레임 확산




dplyr tidyr (3)

다음과 같은 데이터 프레임이 있습니다.

  a b
1 x 8
2 x 6
3 y 3
4 y 4
5 z 5
6 z 6

나는 그것을 이것으로 바꾸고 싶다.

  x y z
1 8 3 5
2 6 4 6

그러나 부름

library(tidyr)
df <- data.frame(
    a = c("x", "x", "y", "y", "z", "z"),
    b = c(8, 6, 3, 4, 5, 6)
)
df %>% spread(a, b)

보고

   x  y  z
1  8 NA NA
2  6 NA NA
3 NA  3 NA
4 NA  4 NA
5 NA NA  5
6 NA NA  6

내가 뭘 잘못하고 있죠?


당신이 tidyr 가 잘되어 있다는 것을 알고 있지만,이 경우에는 base 솔루션이 있습니다.

unstack(df, b~a)

조금 더 빨라졌습니다.

Unit: microseconds

                expr     min      lq     mean  median       uq      max neval
 df %>% spread(a, b) 657.699 679.508 717.7725 690.484 724.9795 1648.381   100
  unstack(df, b ~ a) 309.891 335.264 349.4812 341.9635 351.6565 639.738   100

대중적인 요구에 의해, 더 큰 무엇인가

참조로 전달하면 microbenchmark 문제가 될지 확실하지 않아 data.table 솔루션을 포함하지 않았습니다.

library(microbenchmark)
library(tidyr)
library(magrittr)

nlevels <- 3
#Ensure that all levels have the same number of elements
nrow <- 1e6 - 1e6 %% nlevels
df <- data.frame(a=sample(rep(c("x", "y", "z"), length.out=nrow)),
                 b=sample.int(9, nrow, replace=TRUE))

microbenchmark(df %>% spread(a, b),  unstack(df, b ~ a), data.frame(split(df$b,df$a)), do.call(cbind,split(df$b,df$a)))

1 백만 건의 경우에도 스택 해제가 빠릅니다. 특히 split 솔루션은 매우 빠릅니다.

Unit: milliseconds
                              expr       min        lq      mean    median       uq       max neval
               df %>% spread(a, b) 366.24426 414.46913 450.78504 453.75258 486.1113 542.03722   100
                unstack(df, b ~ a)  47.07663  51.17663  61.24411  53.05315  56.1114 102.71562   100
     data.frame(split(df$b, df$a))  19.44173  19.74379  22.28060  20.18726  22.1372  67.53844   100
 do.call(cbind, split(df$b, df$a))  26.99798  27.41594  31.27944  27.93225  31.2565  79.93624   100

또 다른 base 답변 (빠른 모양) :

data.frame(split(df$b,df$a))

data.table 패키지에서 dcastrowid 를 사용 dcast 작업을 수행 할 수 있습니다.

dat <- dcast(setDT(df), rowid(a) ~ a, value.var = "b")[,a:=NULL]

그것은 다음을 제공합니다 :

> dat
   x y z
1: 8 3 5
2: 6 4 6

이전 솔루션 :

# create a sequence number by group
setDT(df)[, r:=1:.N, by = a]
# reshape to wide format and remove the sequence variable
dat <- dcast(df, r ~ a, value.var = "b")[,r:=NULL]

그것은 다음을 제공합니다 :

> dat
   x y z
1: 8 3 5
2: 6 4 6




tidyr