javascript - node - sha256 js




Создать хэш SHA-256 из Blob/File в javascript (3)

Мне нужно создать дайджест SHA-256 из файла (~ 6 МБ) внутри браузера. Единственный способ, которым мне удалось это сделать, было так:

var reader = new FileReader();
reader.onload = function() {
    // this gets read of the mime-type data header
    var actual_contents = reader.result.slice(reader.result.indexOf(',') + 1);
    var what_i_need = new jsSHA(actual_contents, "B64").getHash("SHA-256", "HEX");
}
reader.readAsDataURL(some_file);

Хотя это работает правильно, проблема в том, что он очень медленный. Для файла размером 6 МБ потребовалось ~ 2-3 секунды. Как я могу улучшить это?


Возможно, было бы быстрее использовать скомпилированную версию emscripten криптографических библиотек,

В. Как быстро будет скомпилированный код?

A. Режим генерации кода Emscripten по умолчанию - в формате asm.js, который является подмножеством JavaScript, предназначенным для быстрого запуска JavaScript-движков. См. Здесь актуальные результаты тестов. Во многих случаях asm.js может приблизиться к собственной скорости.

Здесь вы можете найти криптографическую библиотеку NaCl, составленную Emscripten.


Вот что вы ищете. Я получил это из версии C алгоритма SHA256. Он также включает SHA256D. Я не думаю, что вы получите гораздо быстрее, чем это с помощью javascript. Я попытался расширить циклы, и он работал медленнее из-за оптимизации, выполняемой интерпретатором javascript.

// From: https://github.com/Hartland/GPL-CPU-Miner/blob/master/sha2.c

if ("undefined" == typeof vnet) {
    vnet = new Array();
}

if ("undefined" == typeof vnet.crypt) {
    vnet.crypt = new Array();
}

vnet.crypt.sha2 = function() {

    var sha256_h = [
        0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
        0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
    ];

    var sha256_k = [
                    0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
                    0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
                    0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
                    0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
                    0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
                    0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
                    0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
                    0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
                    0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
                    0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
                    0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
                    0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
                    0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
                    0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
                    0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
                    0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
    ];

    var sha256_init = function(s) {
        s.state = [
                   sha256_h[0],
                   sha256_h[1],
                   sha256_h[2],
                   sha256_h[3],
                   sha256_h[4],
                   sha256_h[5],
                   sha256_h[6],
                   sha256_h[7],
        ];
    }; this.sha256_init = sha256_init;

/*
* SHA256 block compression function. The 256-bit state is transformed via
* the 512-bit input block to produce a new state.
*/
    var sha256_transform = function(s, b, swap) {

        var block = b.block;
        var state = s.state;

        var W;
        var S;
        var t0;
        var t1;
        var i;

        /* 1. Prepare message schedule W. */
        if (swap) {


            W = [
                 ((((block[0] ) << 24) & 0xff000000) | (((block[0] ) << 8) & 0x00ff0000) | (((block[0] ) >> 8) & 0x0000ff00) | (((block[0] ) >> 24) & 0x000000ff)),
                 ((((block[1] ) << 24) & 0xff000000) | (((block[1] ) << 8) & 0x00ff0000) | (((block[1] ) >> 8) & 0x0000ff00) | (((block[1] ) >> 24) & 0x000000ff)),
                 ((((block[2] ) << 24) & 0xff000000) | (((block[2] ) << 8) & 0x00ff0000) | (((block[2] ) >> 8) & 0x0000ff00) | (((block[2] ) >> 24) & 0x000000ff)),
                 ((((block[3] ) << 24) & 0xff000000) | (((block[3] ) << 8) & 0x00ff0000) | (((block[3] ) >> 8) & 0x0000ff00) | (((block[3] ) >> 24) & 0x000000ff)),
                 ((((block[4] ) << 24) & 0xff000000) | (((block[4] ) << 8) & 0x00ff0000) | (((block[4] ) >> 8) & 0x0000ff00) | (((block[4] ) >> 24) & 0x000000ff)),
                 ((((block[5] ) << 24) & 0xff000000) | (((block[5] ) << 8) & 0x00ff0000) | (((block[5] ) >> 8) & 0x0000ff00) | (((block[5] ) >> 24) & 0x000000ff)),
                 ((((block[6] ) << 24) & 0xff000000) | (((block[6] ) << 8) & 0x00ff0000) | (((block[6] ) >> 8) & 0x0000ff00) | (((block[6] ) >> 24) & 0x000000ff)),
                 ((((block[7] ) << 24) & 0xff000000) | (((block[7] ) << 8) & 0x00ff0000) | (((block[7] ) >> 8) & 0x0000ff00) | (((block[7] ) >> 24) & 0x000000ff)),
                 ((((block[8] ) << 24) & 0xff000000) | (((block[8] ) << 8) & 0x00ff0000) | (((block[8] ) >> 8) & 0x0000ff00) | (((block[8] ) >> 24) & 0x000000ff)),
                 ((((block[9] ) << 24) & 0xff000000) | (((block[9] ) << 8) & 0x00ff0000) | (((block[9] ) >> 8) & 0x0000ff00) | (((block[9] ) >> 24) & 0x000000ff)),
                 ((((block[10]) << 24) & 0xff000000) | (((block[10]) << 8) & 0x00ff0000) | (((block[10]) >> 8) & 0x0000ff00) | (((block[10]) >> 24) & 0x000000ff)),
                 ((((block[11]) << 24) & 0xff000000) | (((block[11]) << 8) & 0x00ff0000) | (((block[11]) >> 8) & 0x0000ff00) | (((block[11]) >> 24) & 0x000000ff)),
                 ((((block[12]) << 24) & 0xff000000) | (((block[12]) << 8) & 0x00ff0000) | (((block[12]) >> 8) & 0x0000ff00) | (((block[12]) >> 24) & 0x000000ff)),
                 ((((block[13]) << 24) & 0xff000000) | (((block[13]) << 8) & 0x00ff0000) | (((block[13]) >> 8) & 0x0000ff00) | (((block[13]) >> 24) & 0x000000ff)),
                 ((((block[14]) << 24) & 0xff000000) | (((block[14]) << 8) & 0x00ff0000) | (((block[14]) >> 8) & 0x0000ff00) | (((block[14]) >> 24) & 0x000000ff)),
                 ((((block[15]) << 24) & 0xff000000) | (((block[15]) << 8) & 0x00ff0000) | (((block[15]) >> 8) & 0x0000ff00) | (((block[15]) >> 24) & 0x000000ff))
            ];
        } else {
            W = [
                 block[0],
                 block[1],
                 block[2],
                 block[3],
                 block[4],
                 block[5],
                 block[6],
                 block[7],
                 block[8],
                 block[9],
                 block[10],
                 block[11],
                 block[12],
                 block[13],
                 block[14],
                 block[15]
            ];
        }


        for (i = 16; i < 64; i += 2) {
            W[i] = ((
                ((((W[i-2] >>> 17) | (W[i-2] << 15)) ^ ((W[i-2] >>> 19) | ((W[i-2] << 13)>>>0) ) ^ (W[i - 2] >>> 10)) >>> 0) + //s1 (W[i - 2]) + 
                W[i - 7] + 
                ((((W[i - 15] >>> 7) | (W[i - 15] << 25)) ^ ((W[i - 15] >>> 18) | ((W[i - 15] << 14) >>> 0)) ^ (W[i - 15] >>> 3))  >>> 0) + //s0 (W[i - 15]) + 
                W[i - 16]
            ) & 0xffffffff) >>> 0;

            W[i+1] = ((
                ((((W[i-1] >>> 17) | (W[i-1] << 15)) ^ ((W[i-1] >>> 19) | (W[i-1] << 13)) ^ (W[i - 1] >>> 10)) >>> 0)+ //s1 (W[i - 1]) + 
                W[i - 6] + 
                ((((W[i - 14] >>> 7) | (W[i - 14] << 25)) ^ ((W[i - 14] >>> 18) | (W[i - 14] << 14)) ^ (W[i - 14] >>> 3)) >>> 0)  + //s0 (W[i - 14]) + 
                W[i - 15]
            ) & 0xffffffff) >>> 0;
        }


        /* 2. Initialize working variables. */

        S = [
         state[0],
         state[1],
         state[2],
         state[3],
         state[4],
         state[5],
         state[6],
         state[7],
        ];

        /* 3. Mix. */


        i=0;
        for(;i<64;++i) {

            //RNDr(S,W,i)
            t0 = S[(71 - i) % 8] + 
                ((((S[(68 - i) % 8] >>> 6) | (S[(68 - i) % 8]  << 26)) ^ ((S[(68 - i) % 8] >>> 11) | (S[(68 - i) % 8] << 21)) ^ ((S[(68 - i) % 8] >>> 25) | (S[(68 - i) % 8] << 7)))) + //S1 (S[(68 - i) % 8]) +
                (((S[(68 - i) % 8] & (S[(69 - i) % 8] ^ S[(70 - i) % 8])) ^ S[(70 - i) % 8]) ) + // Ch
                W[i] + 
                sha256_k[i];

            t1 = ((((S[(64 - i) % 8] >>> 2) | ((S[(64 - i) % 8] & 3) << 30)) ^ ((S[(64 - i) % 8] >>> 13) | (S[(64 - i) % 8] << 19)) ^ ((S[(64 - i) % 8] >>> 22) | (S[(64 - i) % 8] << 10)))) + //S0 (S[(64 - i) % 8]) +
                (((S[(64 - i) % 8] & (S[(65 - i) % 8] | S[(66 - i) % 8])) | (S[(65 - i) % 8] & S[(66 - i) % 8]))); // Maj

            S[(67 - i) % 8] = ((S[(67 - i) % 8] + t0) & 0xFFFFFFFF) >>> 0; 
            S[(71 - i) % 8] = ((t0 + t1) & 0xFFFFFFFF) >>> 0;
        }

        /* 4. Mix local working variables into global state */

        i=0;
        for(;i<8;++i) {
            s.state[i] = (0xFFFFFFFF & (state[i] + S[i])) >>> 0;
        }

    }; this.sha256_transform = sha256_transform;

    var sha256d_hash1 = [
        0x00000000, 0x00000000, 0x00000000, 0x00000000,
        0x00000000, 0x00000000, 0x00000000, 0x00000000,
        0x80000000, 0x00000000, 0x00000000, 0x00000000,
        0x00000000, 0x00000000, 0x00000000, 0x00000100
    ];

    var sha256d_80_swap = function(hash, data) 
    {

        var S = new Array();

        var i;

        var b1 = new Array();
        var b2 = new Array();
        var b3 = new Array();

        b1.block = [
            data[0],
            data[1],
            data[2],
            data[3],
            data[4],
            data[5],
            data[6],
            data[7],
            data[8],
            data[9],
            data[10],
            data[11],
            data[12],
            data[13],
            data[14],
            data[15]
        ];

        b2.block = [
            data[16],
            data[17],
            data[18],
            data[19],
            data[20],
            data[21],
            data[22],
            data[23],
            data[24],
            data[25],
            data[26],
            data[27],
            data[28],
            data[29],
            data[30],
            data[31]
        ];

        sha256_init(S);
        sha256_transform(S, b1, 0);
        sha256_transform(S, b2, 0);

        b3.block = [
            S.state[0],
            S.state[1],
            S.state[2],
            S.state[3],
            S.state[4],
            S.state[5],
            S.state[6],
            S.state[7],
            sha256d_hash1[8],
            sha256d_hash1[9],
            sha256d_hash1[10],
            sha256d_hash1[11],
            sha256d_hash1[12],
            sha256d_hash1[13],
            sha256d_hash1[14],
            sha256d_hash1[15]
        ];

        sha256_init(hash);
        sha256_transform(hash, b3, 0);

        for (i = 0; i < 8; i++) {
            hash.state[i] = ((((hash.state[i] ) << 24) & 0xff000000) | (((hash.state[i] ) << 8) & 0x00ff0000) | (((hash.state[i] ) >> 8) & 0x0000ff00) | (((hash.state[i] ) >> 24) & 0x000000ff)); //swab32(hash[i]);
        }

    }; this.sha256d_80_swap = sha256d_80_swap;

    var sha256d = function(hash, data) {
        var S;
        var T;
        var block_in;

        S = new Array();
        T = new Array();

        T.block = [];

        var i, r;

        //hash.hash = new Array(32).join('0').split('').map(parseFloat);

        sha256_init(S);

        for (r = data.length; r > -9; r -= 64) {
            if (r < 64) {
                if (r > 0) {
                    block_in = data.slice(data.length - r,data.length);
                    block_in.push.apply(block_in, new Array(64-r).join('0').split('').map(parseFloat));
                } else {
                    block_in = new Array(64).join('0').split('').map(parseFloat);
                }
            } else {
                block_in = data.slice(data.length - r,data.length - r + 64);
            }

            //memcpy(T, data + len - r, r > 64 ? 64 : (r < 0 ? 0 : r));

            if (r >= 0 && r < 64) {
                block_in[r] = 0x80;
            } 

            for (i = 0; i < 16; i++) {
                T.block[i] = (((0xff & block_in[(i*4)]) << 24) | ((0xff & block_in[(i*4)+1]) << 16) | ((0xff & block_in[(i*4)+2]) << 8) | (0xff & block_in[(i*4)+3])) >>> 0;
            }

            if (r < 56) {
                T.block[15] = 8 * data.length;
            }

            sha256_transform(S, T, 0);
        }
        //memcpy(S + 8, sha256d_hash1 + 8, 32);
        S.block = S.state;
        for(i=8;i<16;i++) {
            S.block[i] =  sha256d_hash1[i];
        }

        sha256_init(T);
        sha256_transform(T, S, 0);

        hash.hash = [ 
                  (T.state[0] >> 24) & 0xff,
                  (T.state[0] >> 16) & 0xff,
                  (T.state[0] >> 8) & 0xff,
                  T.state[0] & 0xff,

                  (T.state[1] >> 24) & 0xff,
                  (T.state[1] >> 16) & 0xff,
                  (T.state[1] >> 8) & 0xff,
                  T.state[1] & 0xff,

                  (T.state[2] >> 24) & 0xff,
                  (T.state[2] >> 16) & 0xff,
                  (T.state[2] >> 8) & 0xff,
                  T.state[2] & 0xff,

                  (T.state[3] >> 24) & 0xff,
                  (T.state[3] >> 16) & 0xff,
                  (T.state[3] >> 8) & 0xff,
                  T.state[3] & 0xff,

                  (T.state[4] >> 24) & 0xff,
                  (T.state[4] >> 16) & 0xff,
                  (T.state[4] >> 8) & 0xff,
                  T.state[4] & 0xff,

                  (T.state[5] >> 24) & 0xff,
                  (T.state[5] >> 16) & 0xff,
                  (T.state[5] >> 8) & 0xff,
                  T.state[5] & 0xff,

                  (T.state[6] >> 24) & 0xff,
                  (T.state[6] >> 16) & 0xff,
                  (T.state[6] >> 8) & 0xff,
                  T.state[6] & 0xff,

                  (T.state[7] >> 24) & 0xff,
                  (T.state[7] >> 16) & 0xff,
                  (T.state[7] >> 8) & 0xff,
                  T.state[7] & 0xff
         ];

    }; this.sha256d = sha256d;



    var sha256 = function(hash, data) {
        var S;
        var T;
        var block_in;

        S = new Array();
        T = new Array();

        T.block = [];

        var i, r;

        hash.hash = new Array(32).join('0').split('').map(parseFloat);

        sha256_init(S);

        for (r = data.length; r > -9; r -= 64) {

            if (r < 64) {
                if (r > 0) {
                    block_in = data.slice(data.length - r,data.length);
                    block_in.push.apply(block_in, new Array(64-r).join('0').split('').map(parseFloat));
                } else {
                    block_in = new Array(64).join('0').split('').map(parseFloat);
                }
            } else {
                block_in = data.slice(data.length - r,data.length - r + 64);
            }

            //memcpy(T, data + len - r, r > 64 ? 64 : (r < 0 ? 0 : r));

            if (r >= 0 && r < 64) {
                block_in[r] = 0x80;
            } 

            for (i = 0; i < 16; i++) {
                T.block[i] = (((0xff & block_in[(i*4)]) << 24) | ((0xff & block_in[(i*4)+1]) << 16) | ((0xff & block_in[(i*4)+2]) << 8) | (0xff & block_in[(i*4)+3])) >>> 0;
            }

            if (r < 56) {
                T.block[15] = 8 * data.length;
            }

            sha256_transform(S, T, 0);
        }

        for (i = 0; i < 8; i++) {
            //be32enc((uint32_t *)hash + i, T[i]);
            hash.hash[(i * 4)] = (S.state[i] >> 24) & 0xff;
            hash.hash[(i * 4)+1] = (S.state[i] >> 16) & 0xff
            hash.hash[(i * 4)+2] = (S.state[i] >> 8) & 0xff
            hash.hash[(i * 4)+3] = S.state[i] & 0xff;
        }
    }; this.sha256 = sha256;



};

Это старый вопрос, но я подумал, что стоит отметить, что asmCrypto значительно быстрее, чем jsSHA , и быстрее, чем CryptoJS и SJCL

https://github.com/vibornoff/asmcrypto.js/

Существует также облегченная версия (вилка выше), поддерживаемая OpenPGP.js

https://github.com/openpgpjs/asmcrypto-lite

Который включает только SHA256 и пару функций AES.

Чтобы использовать asmCrypto вы можете просто выполнить следующие действия:

var sha256HexValue = asmCrypto.SHA256.hex(myArraybuffer);

Я могу хэш-файл размером 150 МБ + <2 секунды последовательно в Chrome.





sha