python - 根据字典将新列添加到数据框




pandas dataframe (5)

可能是使用 .loc[] 另一种方式:

m=df.set_index(df.columns.tolist())
m.loc[list(score.keys())].assign(
           score=score.values()).reindex(m.index,fill_value=0).reset_index()
   gender  age  cholesterol  smoke  score
0       1   13            1      0      0
1       1   45            2      0      0
2       0    1            2      1      5
3       1   45            1      1      4
4       1   15            1      7      0
5       0   16            1      8      0
6       0   16            1      3      0
7       0   16            1      4      0
8       1   15            1      4      0
9       0   15            1      2      0

我有一个数据框和一个字典。 我需要向数据框添加新列,并根据字典计算其值。

机器学习,基于一些表添加了新功能:

score = {(1, 45, 1, 1) : 4, (0, 1, 2, 1) : 5}
df = pd.DataFrame(data = {
    'gender' :      [1,  1,  0, 1,  1,  0,  0,  0,  1,  0],
    'age' :         [13, 45, 1, 45, 15, 16, 16, 16, 15, 15],
    'cholesterol' : [1,  2,  2, 1, 1, 1, 1, 1, 1, 1],
    'smoke' :       [0,  0,  1, 1, 7, 8, 3, 4, 4, 2]},
     dtype = np.int64)

print(df, '\n')
df['score'] = 0
df.score = score[(df.gender, df.age, df.cholesterol, df.smoke)]
print(df)

我期望以下输出:

   gender  age  cholesterol  smoke    score
0       1   13            1      0      0 
1       1   45            2      0      0
2       0    1            2      1      5
3       1   45            1      1      4
4       1   15            1      7      0
5       0   16            1      8      0
6       0   16            1      3      0
7       0   16            1      4      0
8       1   15            1      4      0
9       0   15            1      2      0

您可以使用 map ,因为score是字典:

df['score'] = df[['gender', 'age', 'cholesterol', 'smoke']].apply(tuple, axis=1).map(score).fillna(0)
print(df)

输出量

   gender  age  cholesterol  smoke  score
0       1   13            1      0    0.0
1       1   45            2      0    0.0
2       0    1            2      1    5.0
3       1   45            1      1    4.0
4       1   15            1      7    0.0
5       0   16            1      8    0.0
6       0   16            1      3    0.0
7       0   16            1      4    0.0
8       1   15            1      4    0.0
9       0   15            1      2    0.0

或者,您可以使用列表推导:

df['score'] = [score.get(t, 0) for t in zip(df.gender, df.age, df.cholesterol, df.smoke)]
print(df)

由于 score 是字典(因此键是唯一的),因此我们可以使用 MultiIndex 对齐方式

df = df.set_index(['gender', 'age', 'cholesterol', 'smoke'])
df['score'] = pd.Series(score)  # Assign values based on the tuple
df = df.fillna(0, downcast='infer').reset_index()  # Back to columns
   gender  age  cholesterol  smoke  score
0       1   13            1      0      0
1       1   45            2      0      0
2       0    1            2      1      5
3       1   45            1      1      4
4       1   15            1      7      0
5       0   16            1      8      0
6       0   16            1      3      0
7       0   16            1      4      0
8       1   15            1      4      0
9       0   15            1      2      0

简单的单行解决方案,逐行使用 gettuple

df['score'] = df.apply(lambda x: score.get(tuple(x), 0), axis=1)

上面的解决方案假设顺序中除了所需列之外没有其他列。 如果没有,只使用列

cols = ['gender','age','cholesterol','smoke']
df['score'] = df[cols].apply(lambda x: score.get(tuple(x), 0), axis=1)

reindex

df['socre']=pd.Series(score).reindex(pd.MultiIndex.from_frame(df),fill_value=0).values
df
Out[173]: 
   gender  age  cholesterol  smoke  socre
0       1   13            1      0      0
1       1   45            2      0      0
2       0    1            2      1      5
3       1   45            1      1      4
4       1   15            1      7      0
5       0   16            1      8      0
6       0   16            1      3      0
7       0   16            1      4      0
8       1   15            1      4      0
9       0   15            1      2      0

merge

s=pd.Series(score)
s.index.names=['gender','age','cholesterol','smoke']
df=df.merge(s.to_frame('score').reset_index(),how='left').fillna(0)
Out[166]: 
   gender  age  cholesterol  smoke  score
0       1   13            1      0    0.0
1       1   45            2      0    0.0
2       0    1            2      1    5.0
3       1   45            1      1    4.0
4       1   15            1      7    0.0
5       0   16            1      8    0.0
6       0   16            1      3    0.0
7       0   16            1      4    0.0
8       1   15            1      4    0.0
9       0   15            1      2    0.0






dictionary