c++ - 為什麼排序後的分組的分組求和比未排序的分組要慢?



performance (1)

我有兩列製表符分隔的整數,第一列是隨機整數,第二列是標識組的整數,可以通過此程序生成該整數。 ( generate_groups.cc

#include <cstdlib>
#include <iostream>
#include <ctime>

int main(int argc, char* argv[]) {
  int num_values = atoi(argv[1]);
  int num_groups = atoi(argv[2]);

  int group_size = num_values / num_groups;
  int group = -1;

  std::srand(42);

  for (int i = 0; i < num_values; ++i) {
    if (i % group_size == 0) {
      ++group;
    }
    std::cout << std::rand() << '\t' << group << '\n';
  }

  return 0;
}

然後,我使用第二個程序( sum_groups.cc )計算每個組的總和。

#include <iostream>
#include <chrono>
#include <vector>

// This is the function whose performance I am interested in
void grouped_sum(int* p_x, int *p_g, int n, int* p_out) {
  for (size_t i = 0; i < n; ++i) {
    p_out[p_g[i]] += p_x[i];
  }
}

int main() {
  std::vector<int> values;
  std::vector<int> groups;
  std::vector<int> sums;

  int n_groups = 0;

  // Read in the values and calculate the max number of groups
  while(std::cin) {
    int value, group;
    std::cin >> value >> group;
    values.push_back(value);
    groups.push_back(group);
    if (group > n_groups) {
      n_groups = group;
    }
  }
  sums.resize(n_groups);

  // Time grouped sums
  std::chrono::system_clock::time_point start = std::chrono::system_clock::now();
  for (int i = 0; i < 10; ++i) {
    grouped_sum(values.data(), groups.data(), values.size(), sums.data());
  }
  std::chrono::system_clock::time_point end = std::chrono::system_clock::now();

  std::cout << (end - start).count() << std::endl;

  return 0;
}

如果我隨後在給定大小的數據集上運行這些程序,然後對同一數據集的行順序進行混排,則混排的數據計算總和的速度將比有序數據快約2倍。

g++ -O3 generate_groups.cc -o generate_groups
g++ -O3 sum_groups.cc -o sum_groups
generate_groups 1000000 100 > groups
shuf groups > groups2
sum_groups < groups
sum_groups < groups2
sum_groups < groups2
sum_groups < groups
20784
8854
8220
21006

我本來希望按組排序的原始數據具有更好的數據局部性並且速度更快,但是我觀察到相反的行為。 我想知道是否有人可以假設原因?


設置/使其變慢

首先,該程序將在大約相同的時間運行,無論:

sumspeed$ time ./sum_groups < groups_shuffled 
11558358

real    0m0.705s
user    0m0.692s
sys 0m0.013s

sumspeed$ time ./sum_groups < groups_sorted
24986825

real    0m0.722s
user    0m0.711s
sys 0m0.012s

大部分時間都花在輸入循環中。 但是,由於我們對 grouped_sum() 感興趣,所以我們忽略它。

將基準循環從10次迭代更改為1000次迭代, grouped_sum() 開始控制運行時間:

sumspeed$ time ./sum_groups < groups_shuffled 
1131838420

real    0m1.828s
user    0m1.811s
sys 0m0.016s

sumspeed$ time ./sum_groups < groups_sorted
2494032110

real    0m3.189s
user    0m3.169s
sys 0m0.016s

性能差異

現在,我們可以使用 perf 在程序中找到最熱門的地方。

sumspeed$ perf record ./sum_groups < groups_shuffled
1166805982
[ perf record: Woken up 1 times to write data ]
[kernel.kallsyms] with build id 3a2171019937a2070663f3b6419330223bd64e96 not found, continuing without symbols
Warning:
Processed 4636 samples and lost 6.95% samples!

[ perf record: Captured and wrote 0.176 MB perf.data (4314 samples) ]

sumspeed$ perf record ./sum_groups < groups_sorted
2571547832
[ perf record: Woken up 2 times to write data ]
[kernel.kallsyms] with build id 3a2171019937a2070663f3b6419330223bd64e96 not found, continuing without symbols
[ perf record: Captured and wrote 0.420 MB perf.data (10775 samples) ]

他們之間的區別:

sumspeed$ perf diff
[...]
# Event 'cycles:uppp'
#
# Baseline  Delta Abs  Shared Object        Symbol                                                                  
# ........  .........  ...................  ........................................................................
#
    57.99%    +26.33%  sum_groups           [.] main
    12.10%     -7.41%  libc-2.23.so         [.] _IO_getc
     9.82%     -6.40%  libstdc++.so.6.0.21  [.] std::num_get<char, std::istreambuf_iterator<char, std::char_traits<c
     6.45%     -4.00%  libc-2.23.so         [.] _IO_ungetc
     2.40%     -1.32%  libc-2.23.so         [.] _IO_sputbackc
     1.65%     -1.21%  libstdc++.so.6.0.21  [.] 0x00000000000dc4a4
     1.57%     -1.20%  libc-2.23.so         [.] _IO_fflush
     1.71%     -1.07%  libstdc++.so.6.0.21  [.] std::istream::sentry::sentry
     1.22%     -0.77%  libstdc++.so.6.0.21  [.] std::istream::operator>>
     0.79%     -0.47%  libstdc++.so.6.0.21  [.] __gnu_cxx::stdio_sync_filebuf<char, std::char_traits<char> >::uflow
[...]

main() 中可能有更多時間,這可能已內聯了 grouped_sum() 。 太好了,非常感謝。

性能註釋

main() 內部 花費的時間是否有所不同?

隨機播放:

sumspeed$ perf annotate -i perf.data.old
[...]
            // This is the function whose performance I am interested in
            void grouped_sum(int* p_x, int *p_g, int n, int* p_out) {
              for (size_t i = 0; i < n; ++i) {
       180:   xor    %eax,%eax
              test   %rdi,%rdi
             je     1a4
              nop
                p_out[p_g[i]] += p_x[i];
  6,88 190:   movslq (%r9,%rax,4),%rdx
 58,54        mov    (%r8,%rax,4),%esi
            #include <chrono>
            #include <vector>
       
            // This is the function whose performance I am interested in
            void grouped_sum(int* p_x, int *p_g, int n, int* p_out) {
              for (size_t i = 0; i < n; ++i) {
  3,86        add    $0x1,%rax
                p_out[p_g[i]] += p_x[i];
 29,61        add    %esi,(%rcx,%rdx,4)
[...]

排序:

sumspeed$ perf annotate -i perf.data
[...]
            // This is the function whose performance I am interested in
            void grouped_sum(int* p_x, int *p_g, int n, int* p_out) {
              for (size_t i = 0; i < n; ++i) {
       180:   xor    %eax,%eax
              test   %rdi,%rdi
             je     1a4
              nop
                p_out[p_g[i]] += p_x[i];
  1,00 190:   movslq (%r9,%rax,4),%rdx
 55,12        mov    (%r8,%rax,4),%esi
            #include <chrono>
            #include <vector>
       
            // This is the function whose performance I am interested in
            void grouped_sum(int* p_x, int *p_g, int n, int* p_out) {
              for (size_t i = 0; i < n; ++i) {
  0,07        add    $0x1,%rax
                p_out[p_g[i]] += p_x[i];
 43,28        add    %esi,(%rcx,%rdx,4)
[...]

不,這是兩個相同的指令。 因此,在兩種情況下它們都需要花費很長時間,但對數據進行排序時甚至更糟。

性能統計

好的。 但是我們應該將它們運行相同的次數,因此由於某種原因,每條指令必須變慢。 讓我們看看 perf stat 怎麼說。

sumspeed$ perf stat ./sum_groups < groups_shuffled 
1138880176

 Performance counter stats for './sum_groups':

       1826,232278      task-clock (msec)         #    0,999 CPUs utilized          
                72      context-switches          #    0,039 K/sec                  
                 1      cpu-migrations            #    0,001 K/sec                  
             4 076      page-faults               #    0,002 M/sec                  
     5 403 949 695      cycles                    #    2,959 GHz                    
       930 473 671      stalled-cycles-frontend   #   17,22% frontend cycles idle   
     9 827 685 690      instructions              #    1,82  insn per cycle         
                                                  #    0,09  stalled cycles per insn
     2 086 725 079      branches                  # 1142,639 M/sec                  
         2 069 655      branch-misses             #    0,10% of all branches        

       1,828334373 seconds time elapsed

sumspeed$ perf stat ./sum_groups < groups_sorted
2496546045

 Performance counter stats for './sum_groups':

       3186,100661      task-clock (msec)         #    1,000 CPUs utilized          
                 5      context-switches          #    0,002 K/sec                  
                 0      cpu-migrations            #    0,000 K/sec                  
             4 079      page-faults               #    0,001 M/sec                  
     9 424 565 623      cycles                    #    2,958 GHz                    
     4 955 937 177      stalled-cycles-frontend   #   52,59% frontend cycles idle   
     9 829 009 511      instructions              #    1,04  insn per cycle         
                                                  #    0,50  stalled cycles per insn
     2 086 942 109      branches                  #  655,014 M/sec                  
         2 078 204      branch-misses             #    0,10% of all branches        

       3,186768174 seconds time elapsed

只有一件事很突出: stalled-cycles-frontend

好的,指令流水線正在停滯。 在前端。 確切的 說,這 可能在微體系結構之間有所不同。

我有一個猜測。 如果您很慷慨,您甚至可以稱其為假設。

假設

通過對輸入進行排序,可以增加寫入的局部性。 實際上,它們將 非常 本地化; 您所做的幾乎所有添加操作都將寫入與上一個相同的位置。

這對緩存很有用,但對管道卻沒有用。 您正在引入數據依賴關係,從而阻止下一條加法指令繼續執行,直到前一條加法完成(或 使結果可用於後續指令 )為止。

那是你的問題。

我認為。

修復它

多個和向量

實際上,讓我們嘗試一下。 如果我們使用多個和向量,在每次加法之間切換它們,然後在最後求和,該怎麼辦? 它花費了我們一些局部性,但是應該刪除數據依賴項。

(代碼不是很漂亮;不要判斷我,互聯網!)

#include <iostream>
#include <chrono>
#include <vector>

#ifndef NSUMS
#define NSUMS (4) // must be power of 2 (for masking to work)
#endif

// This is the function whose performance I am interested in
void grouped_sum(int* p_x, int *p_g, int n, int** p_out) {
  for (size_t i = 0; i < n; ++i) {
    p_out[i & (NSUMS-1)][p_g[i]] += p_x[i];
  }
}

int main() {
  std::vector<int> values;
  std::vector<int> groups;
  std::vector<int> sums[NSUMS];

  int n_groups = 0;

  // Read in the values and calculate the max number of groups
  while(std::cin) {
    int value, group;
    std::cin >> value >> group;
    values.push_back(value);
    groups.push_back(group);
    if (group >= n_groups) {
      n_groups = group+1;
    }
  }
  for (int i=0; i<NSUMS; ++i) {
    sums[i].resize(n_groups);
  }

  // Time grouped sums
  std::chrono::system_clock::time_point start = std::chrono::system_clock::now();
  int* sumdata[NSUMS];
  for (int i = 0; i < NSUMS; ++i) {
    sumdata[i] = sums[i].data();
  }
  for (int i = 0; i < 1000; ++i) {
    grouped_sum(values.data(), groups.data(), values.size(), sumdata);
  }
  for (int i = 1; i < NSUMS; ++i) {
    for (int j = 0; j < n_groups; ++j) {
      sumdata[0][j] += sumdata[i][j];
    }
  }
  std::chrono::system_clock::time_point end = std::chrono::system_clock::now();

  std::cout << (end - start).count() << " with NSUMS=" << NSUMS << std::endl;

  return 0;
}

(哦,我還修復了n_groups的計算;它被減一了。)

結果

配置我的makefile以將 -DNSUMS=... arg提供給編譯器後,我可以執行以下操作:

sumspeed$ for n in 1 2 4 8 128; do make -s clean && make -s NSUMS=$n && (perf stat ./sum_groups < groups_shuffled && perf stat ./sum_groups < groups_sorted)  2>&1 | egrep '^[0-9]|frontend'; done
1134557008 with NSUMS=1
       924 611 882      stalled-cycles-frontend   #   17,13% frontend cycles idle   
2513696351 with NSUMS=1
     4 998 203 130      stalled-cycles-frontend   #   52,79% frontend cycles idle   
1116188582 with NSUMS=2
       899 339 154      stalled-cycles-frontend   #   16,83% frontend cycles idle   
1365673326 with NSUMS=2
     1 845 914 269      stalled-cycles-frontend   #   29,97% frontend cycles idle   
1127172852 with NSUMS=4
       902 964 410      stalled-cycles-frontend   #   16,79% frontend cycles idle   
1171849032 with NSUMS=4
     1 007 807 580      stalled-cycles-frontend   #   18,29% frontend cycles idle   
1118732934 with NSUMS=8
       881 371 176      stalled-cycles-frontend   #   16,46% frontend cycles idle   
1129842892 with NSUMS=8
       905 473 182      stalled-cycles-frontend   #   16,80% frontend cycles idle   
1497803734 with NSUMS=128
     1 982 652 954      stalled-cycles-frontend   #   30,63% frontend cycles idle   
1180742299 with NSUMS=128
     1 075 507 514      stalled-cycles-frontend   #   19,39% frontend cycles idle   

和向量的最佳數量可能取決於您CPU的流水線深度。 我7歲的超極本CPU可能可以用比新型花式台式機CPU所需的更少的向量最大化處理流程。

顯然,更多並不一定更好。 當我瘋狂使用128個和向量時,我們開始遭受高速緩存未命中的更多痛苦-改組後的輸入變得比排序慢,就像您最初預期的那樣。 我們來了整整一圈! :)

寄存器中的每組總和

(這是在編輯中添加的)

啊, 書呆子了 ! 如果您知道輸入將被排序並且正在尋找更高的性能,那麼至少在我的計算機上,函數的以下重寫(沒有多餘的總和)會更快。

// This is the function whose performance I am interested in
void grouped_sum(int* p_x, int *p_g, int n, int* p_out) {
  int i = n-1;
  while (i >= 0) {
    int g = p_g[i];
    int gsum = 0;
    do {
      gsum += p_x[i--];
    } while (i >= 0 && p_g[i] == g);
    p_out[g] += gsum;
  }
}

這一技巧的訣竅在於,它允許編譯器將 gsum 變量(組的總和)保留在寄存器中。 我猜測(但可能是非常錯誤的),這樣做速度更快,因為此處的管道中的反饋循環可能更短,並且/或者更少的內存訪問。 一個好的分支預測器會使對組相等性的額外檢查便宜。

結果

混音輸入太糟糕了...

sumspeed$ time ./sum_groups < groups_shuffled
2236354315

real    0m2.932s
user    0m2.923s
sys 0m0.009s

...但是比排序輸入的“許多總和”解決方案快40%。

sumspeed$ time ./sum_groups < groups_sorted
809694018

real    0m1.501s
user    0m1.496s
sys 0m0.005s

很多小組的速度要比幾個小組的慢,因此這是否是更快的實現 實際上 取決於您的數據。 而且,與以往一樣,在您的CPU型號上。

多個和向量,具有偏移量而不是位掩碼

Sopel 建議了四個展開的擴展,以替代我的位掩碼方法。 我已經實施了他們建議的通用版本,可以處理不同的 NSUMS 。 我指望編譯器為我們展開內部循環(至少在 NSUMS=4 確實 NSUMS=4 )。

#include <iostream>
#include <chrono>
#include <vector>

#ifndef NSUMS
#define NSUMS (4) // must be power of 2 (for masking to work)
#endif

#ifndef INNER
#define INNER (0)
#endif
#if INNER
// This is the function whose performance I am interested in
void grouped_sum(int* p_x, int *p_g, int n, int** p_out) {
  size_t i = 0;
  int quadend = n & ~(NSUMS-1);
  for (; i < quadend; i += NSUMS) {
    for (int k=0; k<NSUMS; ++k) {
      p_out[k][p_g[i+k]] += p_x[i+k];
    }
  }
  for (; i < n; ++i) {
    p_out[0][p_g[i]] += p_x[i];
  }
}
#else
// This is the function whose performance I am interested in
void grouped_sum(int* p_x, int *p_g, int n, int** p_out) {
  for (size_t i = 0; i < n; ++i) {
    p_out[i & (NSUMS-1)][p_g[i]] += p_x[i];
  }
}
#endif


int main() {
  std::vector<int> values;
  std::vector<int> groups;
  std::vector<int> sums[NSUMS];

  int n_groups = 0;

  // Read in the values and calculate the max number of groups
  while(std::cin) {
    int value, group;
    std::cin >> value >> group;
    values.push_back(value);
    groups.push_back(group);
    if (group >= n_groups) {
      n_groups = group+1;
    }
  }
  for (int i=0; i<NSUMS; ++i) {
    sums[i].resize(n_groups);
  }

  // Time grouped sums
  std::chrono::system_clock::time_point start = std::chrono::system_clock::now();
  int* sumdata[NSUMS];
  for (int i = 0; i < NSUMS; ++i) {
    sumdata[i] = sums[i].data();
  }
  for (int i = 0; i < 1000; ++i) {
    grouped_sum(values.data(), groups.data(), values.size(), sumdata);
  }
  for (int i = 1; i < NSUMS; ++i) {
    for (int j = 0; j < n_groups; ++j) {
      sumdata[0][j] += sumdata[i][j];
    }
  }
  std::chrono::system_clock::time_point end = std::chrono::system_clock::now();

  std::cout << (end - start).count() << " with NSUMS=" << NSUMS << ", INNER=" << INNER << std::endl;

  return 0;
}

結果

該測量了。 請注意,由於昨天我在/ tmp中工作,因此我沒有完全相同的輸入數據。 因此,這些結果不能直接與之前的結果進行比較(但可能足夠接近)。

sumspeed$ for n in 2 4 8 16; do for inner in 0 1; do make -s clean && make -s NSUMS=$n INNER=$inner && (perf stat ./sum_groups < groups_shuffled && perf stat ./sum_groups < groups_sorted)  2>&1 | egrep '^[0-9]|frontend'; done; done1130558787 with NSUMS=2, INNER=0
       915 158 411      stalled-cycles-frontend   #   16,96% frontend cycles idle   
1351420957 with NSUMS=2, INNER=0
     1 589 408 901      stalled-cycles-frontend   #   26,21% frontend cycles idle   
840071512 with NSUMS=2, INNER=1
     1 053 982 259      stalled-cycles-frontend   #   23,26% frontend cycles idle   
1391591981 with NSUMS=2, INNER=1
     2 830 348 854      stalled-cycles-frontend   #   45,35% frontend cycles idle   
1110302654 with NSUMS=4, INNER=0
       890 869 892      stalled-cycles-frontend   #   16,68% frontend cycles idle   
1145175062 with NSUMS=4, INNER=0
       948 879 882      stalled-cycles-frontend   #   17,40% frontend cycles idle   
822954895 with NSUMS=4, INNER=1
     1 253 110 503      stalled-cycles-frontend   #   28,01% frontend cycles idle   
929548505 with NSUMS=4, INNER=1
     1 422 753 793      stalled-cycles-frontend   #   30,32% frontend cycles idle   
1128735412 with NSUMS=8, INNER=0
       921 158 397      stalled-cycles-frontend   #   17,13% frontend cycles idle   
1120606464 with NSUMS=8, INNER=0
       891 960 711      stalled-cycles-frontend   #   16,59% frontend cycles idle   
800789776 with NSUMS=8, INNER=1
     1 204 516 303      stalled-cycles-frontend   #   27,25% frontend cycles idle   
805223528 with NSUMS=8, INNER=1
     1 222 383 317      stalled-cycles-frontend   #   27,52% frontend cycles idle   
1121644613 with NSUMS=16, INNER=0
       886 781 824      stalled-cycles-frontend   #   16,54% frontend cycles idle   
1108977946 with NSUMS=16, INNER=0
       860 600 975      stalled-cycles-frontend   #   16,13% frontend cycles idle   
911365998 with NSUMS=16, INNER=1
     1 494 671 476      stalled-cycles-frontend   #   31,54% frontend cycles idle   
898729229 with NSUMS=16, INNER=1
     1 474 745 548      stalled-cycles-frontend   #   31,24% frontend cycles idle   

是的, NSUMS=8 的內部循環是我計算機上最快的。 與我的“本地gsum”方法相比,它還具有不為混洗輸入帶來可怕影響的額外好處。

有趣的是: NSUMS=16 變得比 NSUMS=8 差。 這可能是因為我們開始看到更多的高速緩存未命中,或者是因為我們沒有足夠的寄存器來正確展開內部循環。





performance